Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's delve into each of the parts of the problem where [tex]\( X \)[/tex] follows a Poisson distribution with a mean (λ) of 5.2.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.