Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's delve into each of the parts of the problem where [tex]\( X \)[/tex] follows a Poisson distribution with a mean (λ) of 5.2.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
### a. [tex]\( P(X=6) \)[/tex]
To find the probability of exactly 6 events occurring, which is [tex]\( P(X=6) \)[/tex], we use the probability mass function (PMF) of the Poisson distribution:
[tex]\[ P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!} \][/tex]
For [tex]\( k=6 \)[/tex] and [tex]\( \lambda=5.2 \)[/tex],
[tex]\[ P(X=6) = \frac{e^{-5.2} \cdot 5.2^6}{6!} \][/tex]
Using the appropriate computations,
[tex]\[ P(X=6) \approx 0.151. \][/tex]
### b. [tex]\( P(X \leq 6) \)[/tex]
To find the cumulative probability up to and including 6 events, [tex]\( P(X \leq 6) \)[/tex], we use the cumulative distribution function (CDF) of the Poisson distribution which sums up the probabilities from 0 to 6:
[tex]\[ P(X \leq 6) = \sum_{k=0}^{6} P(X=k) \][/tex]
After computing each term and summing them up,
[tex]\[ P(X \leq 6) \approx 0.732. \][/tex]
### c. [tex]\( P(X > 6) \)[/tex]
To find the probability of more than 6 events occurring, which is [tex]\( P(X>6) \)[/tex], we can use the complement rule since we already know [tex]\( P(X \leq 6) \)[/tex]:
[tex]\[ P(X > 6) = 1 - P(X \leq 6) \][/tex]
Given that [tex]\( P(X \leq 6) \approx 0.732 \)[/tex],
[tex]\[ P(X > 6) = 1 - 0.732 \approx 0.268. \][/tex]
Therefore, the probabilities are:
- a. [tex]\( P(X=6) \approx 0.151 \)[/tex]
- b. [tex]\( P(X \leq 6) \approx 0.732 \)[/tex]
- c. [tex]\( P(X>6) \approx 0.268 \)[/tex]
These values are rounded to three decimal places as required.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.