Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the absolute value equation [tex]\(3|x - 4| = 33\)[/tex], follow these steps:
1. Isolate the absolute value expression:
Divide both sides of the equation by 3:
[tex]\[ |x - 4| = \frac{33}{3} \][/tex]
Simplifying the right side, we get:
[tex]\[ |x - 4| = 11 \][/tex]
2. Set up two separate equations:
Since the absolute value expression [tex]\( |x - 4| \)[/tex] equals 11, we need to consider both the positive and negative cases for the expression inside the absolute value. This gives us two equations to solve:
[tex]\[ x - 4 = 11 \][/tex]
[tex]\[ x - 4 = -11 \][/tex]
3. Solve each equation separately:
- For the first equation [tex]\( x - 4 = 11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = 11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = 15 \][/tex]
- For the second equation [tex]\( x - 4 = -11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = -11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = -7 \][/tex]
4. Combine the solutions:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 3|x - 4| = 33 \)[/tex] are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
1. Isolate the absolute value expression:
Divide both sides of the equation by 3:
[tex]\[ |x - 4| = \frac{33}{3} \][/tex]
Simplifying the right side, we get:
[tex]\[ |x - 4| = 11 \][/tex]
2. Set up two separate equations:
Since the absolute value expression [tex]\( |x - 4| \)[/tex] equals 11, we need to consider both the positive and negative cases for the expression inside the absolute value. This gives us two equations to solve:
[tex]\[ x - 4 = 11 \][/tex]
[tex]\[ x - 4 = -11 \][/tex]
3. Solve each equation separately:
- For the first equation [tex]\( x - 4 = 11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = 11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = 15 \][/tex]
- For the second equation [tex]\( x - 4 = -11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = -11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = -7 \][/tex]
4. Combine the solutions:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 3|x - 4| = 33 \)[/tex] are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.