Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the absolute value equation [tex]\(3|x - 4| = 33\)[/tex], follow these steps:
1. Isolate the absolute value expression:
Divide both sides of the equation by 3:
[tex]\[ |x - 4| = \frac{33}{3} \][/tex]
Simplifying the right side, we get:
[tex]\[ |x - 4| = 11 \][/tex]
2. Set up two separate equations:
Since the absolute value expression [tex]\( |x - 4| \)[/tex] equals 11, we need to consider both the positive and negative cases for the expression inside the absolute value. This gives us two equations to solve:
[tex]\[ x - 4 = 11 \][/tex]
[tex]\[ x - 4 = -11 \][/tex]
3. Solve each equation separately:
- For the first equation [tex]\( x - 4 = 11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = 11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = 15 \][/tex]
- For the second equation [tex]\( x - 4 = -11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = -11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = -7 \][/tex]
4. Combine the solutions:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 3|x - 4| = 33 \)[/tex] are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
1. Isolate the absolute value expression:
Divide both sides of the equation by 3:
[tex]\[ |x - 4| = \frac{33}{3} \][/tex]
Simplifying the right side, we get:
[tex]\[ |x - 4| = 11 \][/tex]
2. Set up two separate equations:
Since the absolute value expression [tex]\( |x - 4| \)[/tex] equals 11, we need to consider both the positive and negative cases for the expression inside the absolute value. This gives us two equations to solve:
[tex]\[ x - 4 = 11 \][/tex]
[tex]\[ x - 4 = -11 \][/tex]
3. Solve each equation separately:
- For the first equation [tex]\( x - 4 = 11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = 11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = 15 \][/tex]
- For the second equation [tex]\( x - 4 = -11 \)[/tex]:
Add 4 to both sides:
[tex]\[ x = -11 + 4 \][/tex]
Simplifying, we find:
[tex]\[ x = -7 \][/tex]
4. Combine the solutions:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\( 3|x - 4| = 33 \)[/tex] are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Therefore, the solutions to the equation are:
[tex]\[ x = 15 \quad \text{and} \quad x = -7 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.