Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's explore the function [tex]\( y = 2x^3 - 3x^2 + 6x \)[/tex] step-by-step.
1. Identification of the Function:
The given function is a polynomial function of degree 3. It can be expressed as:
[tex]\[ y = 2x^3 - 3x^2 + 6x \][/tex]
2. Coefficients and Terms:
- The term [tex]\( 2x^3 \)[/tex] has a coefficient of 2 and represents the cubic term.
- The term [tex]\( -3x^2 \)[/tex] has a coefficient of -3 and represents the quadratic term.
- The term [tex]\( 6x \)[/tex] has a coefficient of 6 and represents the linear term.
3. First Derivative:
To analyze the behavior of the function, we may need to find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^3 - 3x^2 + 6x) = 6x^2 - 6x + 6 \][/tex]
4. Second Derivative:
The second derivative [tex]\( \frac{d^2y}{dx^2} \)[/tex] helps us understand the concavity of the function:
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(6x^2 - 6x + 6) = 12x - 6 \][/tex]
5. Critical Points:
To find the critical points, we set the first derivative to zero:
[tex]\[ 6x^2 - 6x + 6 = 0 \][/tex]
Simplifying further, we get:
[tex]\[ x^2 - x + 1 = 0 \][/tex]
The discriminant of this quadratic equation is [tex]\( b^2 - 4ac \)[/tex]:
[tex]\[ (-1)^2 - 4(1)(1) = 1 - 4 = -3 \][/tex]
Since the discriminant is negative, there are no real roots, and hence no real critical points.
6. Behavior and Graph Analysis:
- Since there are no real roots for the first derivative, the function does not have any turning points.
- The second derivative [tex]\( 12x - 6 \)[/tex] helps us understand the concavity:
- When [tex]\( x > \frac{1}{2} \)[/tex], [tex]\( 12x - 6 > 0 \)[/tex], indicating the function is concave up.
- When [tex]\( x < \frac{1}{2} \)[/tex], [tex]\( 12x - 6 < 0 \)[/tex], indicating the function is concave down.
7. Inflection Point:
The point where the concavity changes is known as the inflection point, found by setting the second derivative to zero:
[tex]\[ 12x - 6 = 0 \implies x = \frac{1}{2} \][/tex]
Substituting [tex]\( x = \frac{1}{2} \)[/tex] back into the original function to find [tex]\( y \)[/tex]:
[tex]\[ y = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 + 6\left(\frac{1}{2}\right) = 2\left(\frac{1}{8}\right) - 3\left(\frac{1}{4}\right) + 3 = \frac{1}{4} - \frac{3}{4} + 3 = 2.5 \][/tex]
Thus, the inflection point is [tex]\( \left( \frac{1}{2}, 2.5 \right) \)[/tex].
8. Conclusion:
The function has an inflection point at [tex]\( \left( \frac{1}{2}, 2.5 \right) \)[/tex] and changes concavity at this point. The graph does not have any other turning points but exhibits only one concavity change.
So, the function [tex]\( y = 2x^3 - 3x^2 + 6x \)[/tex] has interesting features such as changing concavity at [tex]\( x = \frac{1}{2} \)[/tex] but no critical points. This is reflective of the function's polynomial nature.
1. Identification of the Function:
The given function is a polynomial function of degree 3. It can be expressed as:
[tex]\[ y = 2x^3 - 3x^2 + 6x \][/tex]
2. Coefficients and Terms:
- The term [tex]\( 2x^3 \)[/tex] has a coefficient of 2 and represents the cubic term.
- The term [tex]\( -3x^2 \)[/tex] has a coefficient of -3 and represents the quadratic term.
- The term [tex]\( 6x \)[/tex] has a coefficient of 6 and represents the linear term.
3. First Derivative:
To analyze the behavior of the function, we may need to find the first derivative [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(2x^3 - 3x^2 + 6x) = 6x^2 - 6x + 6 \][/tex]
4. Second Derivative:
The second derivative [tex]\( \frac{d^2y}{dx^2} \)[/tex] helps us understand the concavity of the function:
[tex]\[ \frac{d^2y}{dx^2} = \frac{d}{dx}(6x^2 - 6x + 6) = 12x - 6 \][/tex]
5. Critical Points:
To find the critical points, we set the first derivative to zero:
[tex]\[ 6x^2 - 6x + 6 = 0 \][/tex]
Simplifying further, we get:
[tex]\[ x^2 - x + 1 = 0 \][/tex]
The discriminant of this quadratic equation is [tex]\( b^2 - 4ac \)[/tex]:
[tex]\[ (-1)^2 - 4(1)(1) = 1 - 4 = -3 \][/tex]
Since the discriminant is negative, there are no real roots, and hence no real critical points.
6. Behavior and Graph Analysis:
- Since there are no real roots for the first derivative, the function does not have any turning points.
- The second derivative [tex]\( 12x - 6 \)[/tex] helps us understand the concavity:
- When [tex]\( x > \frac{1}{2} \)[/tex], [tex]\( 12x - 6 > 0 \)[/tex], indicating the function is concave up.
- When [tex]\( x < \frac{1}{2} \)[/tex], [tex]\( 12x - 6 < 0 \)[/tex], indicating the function is concave down.
7. Inflection Point:
The point where the concavity changes is known as the inflection point, found by setting the second derivative to zero:
[tex]\[ 12x - 6 = 0 \implies x = \frac{1}{2} \][/tex]
Substituting [tex]\( x = \frac{1}{2} \)[/tex] back into the original function to find [tex]\( y \)[/tex]:
[tex]\[ y = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 + 6\left(\frac{1}{2}\right) = 2\left(\frac{1}{8}\right) - 3\left(\frac{1}{4}\right) + 3 = \frac{1}{4} - \frac{3}{4} + 3 = 2.5 \][/tex]
Thus, the inflection point is [tex]\( \left( \frac{1}{2}, 2.5 \right) \)[/tex].
8. Conclusion:
The function has an inflection point at [tex]\( \left( \frac{1}{2}, 2.5 \right) \)[/tex] and changes concavity at this point. The graph does not have any other turning points but exhibits only one concavity change.
So, the function [tex]\( y = 2x^3 - 3x^2 + 6x \)[/tex] has interesting features such as changing concavity at [tex]\( x = \frac{1}{2} \)[/tex] but no critical points. This is reflective of the function's polynomial nature.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.