Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To simplify the given expression, we perform the indicated operation and leave the answer in factored form.
Given:
[tex]\[ \frac{6}{x-3} - \frac{3}{x+7} \][/tex]
1. Find a common denominator:
The denominators of the fractions are different, so we'll find a common denominator. The common denominator will be the product of both denominators:
[tex]\[ (x - 3)(x + 7) \][/tex]
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{6}{x-3} = \frac{6(x+7)}{(x-3)(x+7)} \][/tex]
[tex]\[ \frac{3}{x+7} = \frac{3(x-3)}{(x-3)(x+7)} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{6(x+7)}{(x-3)(x+7)} - \frac{3(x-3)}{(x-3)(x+7)} = \frac{6(x+7) - 3(x-3)}{(x-3)(x+7)} \][/tex]
4. Simplify the numerator:
[tex]\[ 6(x + 7) - 3(x - 3) = 6x + 42 - 3x + 9 = 3x + 51 \][/tex]
So the combined and simplified expression is:
[tex]\[ \frac{3x + 51}{(x-3)(x+7)} \][/tex]
5. Factor the numerator:
Notice that [tex]\(3x + 51\)[/tex] can be factored as [tex]\(3(x + 17)\)[/tex]:
[tex]\[ 3(x + 17) \][/tex]
6. Write the final expression in factored form:
So, the simplified and factored form of the expression is:
[tex]\[ \boxed{\frac{3(x + 17)}{(x - 3)(x + 7)}} \][/tex]
Given:
[tex]\[ \frac{6}{x-3} - \frac{3}{x+7} \][/tex]
1. Find a common denominator:
The denominators of the fractions are different, so we'll find a common denominator. The common denominator will be the product of both denominators:
[tex]\[ (x - 3)(x + 7) \][/tex]
2. Rewrite each fraction with the common denominator:
[tex]\[ \frac{6}{x-3} = \frac{6(x+7)}{(x-3)(x+7)} \][/tex]
[tex]\[ \frac{3}{x+7} = \frac{3(x-3)}{(x-3)(x+7)} \][/tex]
3. Combine the fractions:
[tex]\[ \frac{6(x+7)}{(x-3)(x+7)} - \frac{3(x-3)}{(x-3)(x+7)} = \frac{6(x+7) - 3(x-3)}{(x-3)(x+7)} \][/tex]
4. Simplify the numerator:
[tex]\[ 6(x + 7) - 3(x - 3) = 6x + 42 - 3x + 9 = 3x + 51 \][/tex]
So the combined and simplified expression is:
[tex]\[ \frac{3x + 51}{(x-3)(x+7)} \][/tex]
5. Factor the numerator:
Notice that [tex]\(3x + 51\)[/tex] can be factored as [tex]\(3(x + 17)\)[/tex]:
[tex]\[ 3(x + 17) \][/tex]
6. Write the final expression in factored form:
So, the simplified and factored form of the expression is:
[tex]\[ \boxed{\frac{3(x + 17)}{(x - 3)(x + 7)}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.