At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To factorize the expression [tex]\((a-b)^3+(b-c)^3+(c-a)^3\)[/tex], let's follow a detailed, step-by-step approach:
1. Understanding the Expression:
We are given the expression [tex]\((a-b)^3 + (b-c)^3 + (c-a)^3\)[/tex] and asked to factorize it.
2. Sum of Cubes Identity:
There's an identity in algebra known as the sum of cubes identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
In this identity, if [tex]\(x + y + z = 0\)[/tex], then the expression simplifies to:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
3. Assigning Values:
In our expression, let:
[tex]\[ x = (a - b), \quad y = (b - c), \quad z = (c - a) \][/tex]
4. Sum of x, y, and z:
Add the terms [tex]\(x, y, z\)[/tex] to check if their sum equals zero:
[tex]\[ (a - b) + (b - c) + (c - a) \][/tex]
This simplifies to:
[tex]\[ a - b + b - c + c - a = 0 \][/tex]
Since [tex]\(x + y + z = 0\)[/tex], we can use the simplification mentioned earlier.
5. Simplified Sum of Cubes:
According to the identity, when [tex]\(x + y + z = 0\)[/tex],
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
Thus, substituting back:
[tex]\[ (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a) \][/tex]
Therefore, the factorized form of the given expression is:
[tex]\[ 3(a-b)(b-c)(c-a) \][/tex]
This corresponds to:
(B) [tex]\(\boxed{3(a-b)(b-c)(c-a)}\)[/tex]
1. Understanding the Expression:
We are given the expression [tex]\((a-b)^3 + (b-c)^3 + (c-a)^3\)[/tex] and asked to factorize it.
2. Sum of Cubes Identity:
There's an identity in algebra known as the sum of cubes identity:
[tex]\[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \][/tex]
In this identity, if [tex]\(x + y + z = 0\)[/tex], then the expression simplifies to:
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
3. Assigning Values:
In our expression, let:
[tex]\[ x = (a - b), \quad y = (b - c), \quad z = (c - a) \][/tex]
4. Sum of x, y, and z:
Add the terms [tex]\(x, y, z\)[/tex] to check if their sum equals zero:
[tex]\[ (a - b) + (b - c) + (c - a) \][/tex]
This simplifies to:
[tex]\[ a - b + b - c + c - a = 0 \][/tex]
Since [tex]\(x + y + z = 0\)[/tex], we can use the simplification mentioned earlier.
5. Simplified Sum of Cubes:
According to the identity, when [tex]\(x + y + z = 0\)[/tex],
[tex]\[ x^3 + y^3 + z^3 = 3xyz \][/tex]
Thus, substituting back:
[tex]\[ (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a) \][/tex]
Therefore, the factorized form of the given expression is:
[tex]\[ 3(a-b)(b-c)(c-a) \][/tex]
This corresponds to:
(B) [tex]\(\boxed{3(a-b)(b-c)(c-a)}\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.