Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\(\sqrt{b + 20} - \sqrt{b} = 5\)[/tex], we follow these steps:
1. Add [tex]\(\sqrt{b}\)[/tex] to both sides:
[tex]\[ \sqrt{b + 20} = 5 + \sqrt{b} \][/tex]
2. Square both sides to eliminate the radical on the left side:
[tex]\[ (\sqrt{b + 20})^2 = (5 + \sqrt{b})^2 \][/tex]
[tex]\[ b + 20 = 25 + 10\sqrt{b} + b \][/tex]
3. Simplify the equation:
[tex]\[ b + 20 = 25 + 10\sqrt{b} + b \][/tex]
Subtract [tex]\(b\)[/tex] from both sides:
[tex]\[ 20 = 25 + 10\sqrt{b} \][/tex]
4. Isolate the radical term [tex]\(\sqrt{b}\)[/tex]:
[tex]\[ 10\sqrt{b} = 20 - 25 \][/tex]
[tex]\[ 10\sqrt{b} = -5 \][/tex]
Since a square root cannot be negative in real numbers, we need to reevaluate our steps as squaring both sides can introduce extraneous solutions. Therefore, squaring both sides again might be necessary since we likely made an algebraic mistake.
Since the process involves dealing with issues that arise from squaring radicals and verifying the solutions by squaring both sides multiple times to validate the result properly:
- Add [tex]\(\sqrt{b}\)[/tex] to both sides
- Square both sides to remove the radical
- Simplify the equation
- Isolate the radical term
- Square again if needed to clear the issue of extraneous solutions
Thus, the correct statement that describes the necessary process to solve the equation [tex]\(\sqrt{b + 20} - \sqrt{b} = 5\)[/tex]:
Add a constant term to both sides and square both sides twice.
1. Add [tex]\(\sqrt{b}\)[/tex] to both sides:
[tex]\[ \sqrt{b + 20} = 5 + \sqrt{b} \][/tex]
2. Square both sides to eliminate the radical on the left side:
[tex]\[ (\sqrt{b + 20})^2 = (5 + \sqrt{b})^2 \][/tex]
[tex]\[ b + 20 = 25 + 10\sqrt{b} + b \][/tex]
3. Simplify the equation:
[tex]\[ b + 20 = 25 + 10\sqrt{b} + b \][/tex]
Subtract [tex]\(b\)[/tex] from both sides:
[tex]\[ 20 = 25 + 10\sqrt{b} \][/tex]
4. Isolate the radical term [tex]\(\sqrt{b}\)[/tex]:
[tex]\[ 10\sqrt{b} = 20 - 25 \][/tex]
[tex]\[ 10\sqrt{b} = -5 \][/tex]
Since a square root cannot be negative in real numbers, we need to reevaluate our steps as squaring both sides can introduce extraneous solutions. Therefore, squaring both sides again might be necessary since we likely made an algebraic mistake.
Since the process involves dealing with issues that arise from squaring radicals and verifying the solutions by squaring both sides multiple times to validate the result properly:
- Add [tex]\(\sqrt{b}\)[/tex] to both sides
- Square both sides to remove the radical
- Simplify the equation
- Isolate the radical term
- Square again if needed to clear the issue of extraneous solutions
Thus, the correct statement that describes the necessary process to solve the equation [tex]\(\sqrt{b + 20} - \sqrt{b} = 5\)[/tex]:
Add a constant term to both sides and square both sides twice.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.