Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve these problems, we will use the equation for height, [tex]\( h = -16t^2 + 136t + 18 \)[/tex], where [tex]\( t \)[/tex] is the time in seconds.
### Part 1: When will the height be 252 feet?
We need to determine the value(s) of [tex]\( t \)[/tex] when [tex]\( h = 252 \)[/tex]:
[tex]\[ 252 = -16t^2 + 136t + 18 \][/tex]
Rearranging this equation, we get:
[tex]\[ -16t^2 + 136t + 18 - 252 = 0 \][/tex]
[tex]\[ -16t^2 + 136t - 234 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
[tex]\[ a = -16 \][/tex]
[tex]\[ b = 136 \][/tex]
[tex]\[ c = -234 \][/tex]
We solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ t = \frac{-136 \pm \sqrt{136^2 - 4(-16)(-234)}}{2(-16)} \][/tex]
Solving the discriminant part [tex]\( b^2 - 4ac \)[/tex] first:
[tex]\[ 136^2 = 18496 \][/tex]
[tex]\[ -4 \cdot (-16) \cdot (-234) = 14976 \][/tex]
[tex]\[ b^2 - 4ac = 18496 - 14976 = 3520 \][/tex]
Thus, the equation for [tex]\( t \)[/tex] becomes:
[tex]\[ t = \frac{-136 \pm \sqrt{3520}}{-32} \][/tex]
Simplifying:
[tex]\[ \sqrt{3520} = \sqrt{16 \cdot 220} = 4\sqrt{220} \][/tex]
So,
[tex]\[ t = \frac{-136 \pm 4\sqrt{220}}{-32} \][/tex]
[tex]\[ t = \frac{-136 + 4\sqrt{220}}{-32}, \quad t = \frac{-136 - 4\sqrt{220}}{-32} \][/tex]
Further simplifying:
[tex]\[ t = \frac{-136 + \sqrt{3520}}{-32} = \frac{-136}{-32} + \frac{4\sqrt{220}}{-32} \][/tex]
[tex]\[ t = \frac{136}{32} - \frac{\sqrt{220}}{8} \][/tex]
[tex]\[ t = \frac{255}{32} - \frac{\sqrt{220}}{8} \][/tex]
The solutions [tex]\( t \)[/tex] are:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{55}}{4}, \quad t = \frac{17}{4} + \frac{\sqrt{55}}{4} \][/tex]
Therefore, the height will be 252 feet at:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{55}}{4} \][/tex]
[tex]\[ t = \frac{17}{4} + \frac{\sqrt{55}}{4} \][/tex]
### Part 2: When will the object reach the ground?
We need to determine the value(s) of [tex]\( t \)[/tex] when [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 136t + 18 \][/tex]
Solving the quadratic equation:
[tex]\[ -16t^2 + 136t + 18 = 0 \][/tex]
Using the same quadratic formula:
[tex]\[ t = \frac{-136 \pm \sqrt{136^2 - 4(-16)(18)}}{2(-16)} \][/tex]
Solving the discriminant:
[tex]\[ 136^2 = 18496 \][/tex]
[tex]\[ -4 \cdot (-16) \cdot 18 = 1152 \][/tex]
[tex]\[ b^2 - 4ac = 18496 + 1152 = 19648 \][/tex]
Thus:
[tex]\[ t = \frac{-136 \pm \sqrt{19648}}{-32} \][/tex]
Simplifying:
[tex]\[ \sqrt{19648} = \sqrt{64 \cdot 307} = 8\sqrt{307} \][/tex]
So,
[tex]\[ t = \frac{-136 \pm 8\sqrt{307}}{-32} \][/tex]
[tex]\[ t = \frac{-136}{-32} + \frac{8\sqrt{307}}{-32} \][/tex]
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4} \][/tex]
The solutions [tex]\( t \)[/tex] are:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4}, \quad t = \frac{17}{4} + \frac{\sqrt{307}}{4} \][/tex]
Therefore, the object will reach the ground at:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4} \][/tex]
[tex]\[ t = \frac{17}{4} + \frac{\sqrt{307}}{4} \][/tex]
These results give us the times at which the height is 252 feet and when the object reaches the ground.
### Part 1: When will the height be 252 feet?
We need to determine the value(s) of [tex]\( t \)[/tex] when [tex]\( h = 252 \)[/tex]:
[tex]\[ 252 = -16t^2 + 136t + 18 \][/tex]
Rearranging this equation, we get:
[tex]\[ -16t^2 + 136t + 18 - 252 = 0 \][/tex]
[tex]\[ -16t^2 + 136t - 234 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], where:
[tex]\[ a = -16 \][/tex]
[tex]\[ b = 136 \][/tex]
[tex]\[ c = -234 \][/tex]
We solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ t = \frac{-136 \pm \sqrt{136^2 - 4(-16)(-234)}}{2(-16)} \][/tex]
Solving the discriminant part [tex]\( b^2 - 4ac \)[/tex] first:
[tex]\[ 136^2 = 18496 \][/tex]
[tex]\[ -4 \cdot (-16) \cdot (-234) = 14976 \][/tex]
[tex]\[ b^2 - 4ac = 18496 - 14976 = 3520 \][/tex]
Thus, the equation for [tex]\( t \)[/tex] becomes:
[tex]\[ t = \frac{-136 \pm \sqrt{3520}}{-32} \][/tex]
Simplifying:
[tex]\[ \sqrt{3520} = \sqrt{16 \cdot 220} = 4\sqrt{220} \][/tex]
So,
[tex]\[ t = \frac{-136 \pm 4\sqrt{220}}{-32} \][/tex]
[tex]\[ t = \frac{-136 + 4\sqrt{220}}{-32}, \quad t = \frac{-136 - 4\sqrt{220}}{-32} \][/tex]
Further simplifying:
[tex]\[ t = \frac{-136 + \sqrt{3520}}{-32} = \frac{-136}{-32} + \frac{4\sqrt{220}}{-32} \][/tex]
[tex]\[ t = \frac{136}{32} - \frac{\sqrt{220}}{8} \][/tex]
[tex]\[ t = \frac{255}{32} - \frac{\sqrt{220}}{8} \][/tex]
The solutions [tex]\( t \)[/tex] are:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{55}}{4}, \quad t = \frac{17}{4} + \frac{\sqrt{55}}{4} \][/tex]
Therefore, the height will be 252 feet at:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{55}}{4} \][/tex]
[tex]\[ t = \frac{17}{4} + \frac{\sqrt{55}}{4} \][/tex]
### Part 2: When will the object reach the ground?
We need to determine the value(s) of [tex]\( t \)[/tex] when [tex]\( h = 0 \)[/tex]:
[tex]\[ 0 = -16t^2 + 136t + 18 \][/tex]
Solving the quadratic equation:
[tex]\[ -16t^2 + 136t + 18 = 0 \][/tex]
Using the same quadratic formula:
[tex]\[ t = \frac{-136 \pm \sqrt{136^2 - 4(-16)(18)}}{2(-16)} \][/tex]
Solving the discriminant:
[tex]\[ 136^2 = 18496 \][/tex]
[tex]\[ -4 \cdot (-16) \cdot 18 = 1152 \][/tex]
[tex]\[ b^2 - 4ac = 18496 + 1152 = 19648 \][/tex]
Thus:
[tex]\[ t = \frac{-136 \pm \sqrt{19648}}{-32} \][/tex]
Simplifying:
[tex]\[ \sqrt{19648} = \sqrt{64 \cdot 307} = 8\sqrt{307} \][/tex]
So,
[tex]\[ t = \frac{-136 \pm 8\sqrt{307}}{-32} \][/tex]
[tex]\[ t = \frac{-136}{-32} + \frac{8\sqrt{307}}{-32} \][/tex]
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4} \][/tex]
The solutions [tex]\( t \)[/tex] are:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4}, \quad t = \frac{17}{4} + \frac{\sqrt{307}}{4} \][/tex]
Therefore, the object will reach the ground at:
[tex]\[ t = \frac{17}{4} - \frac{\sqrt{307}}{4} \][/tex]
[tex]\[ t = \frac{17}{4} + \frac{\sqrt{307}}{4} \][/tex]
These results give us the times at which the height is 252 feet and when the object reaches the ground.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.