Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's analyze each statement given for the complex numbers [tex]\( x = a + b i \)[/tex], [tex]\( y = c + d i \)[/tex], and [tex]\( z = f + g i \)[/tex] to determine their truth values.
1. Commutativity of Addition:
[tex]\( x + y = y + x \)[/tex]
Addition of complex numbers is commutative:
[tex]\[ x + y = (a + bi) + (c + di) = (a + c) + (b + d)i \][/tex]
[tex]\[ y + x = (c + di) + (a + bi) = (c + a) + (d + b)i \][/tex]
Since addition in the real and imaginary parts is commutative, [tex]\( x + y = y + x \)[/tex] holds true.
This statement is true.
2. Associativity of Multiplication:
[tex]\( (x \times y) \times z = x \times (y \times z) \)[/tex]
Multiplication of complex numbers is associative:
[tex]\[ (x \times y) = (a + bi)(c + di) \][/tex]
By expanding, we get:
[tex]\[ (ac - bd) + (ad + bc)i \][/tex]
Similarly, we compute [tex]\( y \times z \)[/tex] and then multiply by [tex]\( x \)[/tex].
Without loss of generality, because each multiplication step follows associative properties, this leads us to the fact that:
[tex]\[ (x \times y) \times z = x \times (y \times z) \][/tex]
This statement is true.
3. Commutativity of Subtraction:
[tex]\( x - y = y - x \)[/tex]
Subtraction of complex numbers is not commutative:
[tex]\[ x - y = (a + bi) - (c + di) = (a - c) + (b - d)i \][/tex]
[tex]\[ y - x = (c + di) - (a + bi) = (c - a) + (d - b)i \][/tex]
Since [tex]\( a - c \neq c - a \)[/tex] and [tex]\( b - d \neq d - b \)[/tex], [tex]\( x - y \neq y - x \)[/tex].
This statement is false.
4. Associativity of Addition:
[tex]\( (x + y) + z = x + (y + z) \)[/tex]
Addition of complex numbers is associative:
[tex]\[ (x + y) + z = ((a + bi) + (c + di)) + (f + gi) = (a + c + f) + (b + d + g)i \][/tex]
[tex]\[ x + (y + z) = (a + bi) + ((c + di) + (f + gi)) = (a + c + f) + (b + d + g)i \][/tex]
Since both sides equate to [tex]\( (a + c + f) + (b + d + g)i \)[/tex], the property holds.
This statement is true.
5. Associativity of Subtraction:
[tex]\( (x - y) - z = x - (y - z) \)[/tex]
Subtraction of complex numbers is not associative:
[tex]\[ (x - y) - z = ((a + bi) - (c + di)) - (f + gi) = (a - c - f) + (b - d - g)i \][/tex]
[tex]\[ x - (y - z) = (a + bi) - ((c + di) - (f + gi)) = (a - c + f) + (b - d + g)i \][/tex]
Therefore, [tex]\( (a - c - f) + (b - d - g)i \)[/tex] does not equal [tex]\( (a - c + f) + (b - d + g)i \)[/tex].
This statement is false.
Based on the analysis:
- True: [tex]\( x + y = y + x \)[/tex], [tex]\( (x \times y) \times z = x \times (y \times z) \)[/tex], [tex]\( (x + y) + z = x + (y + z) \)[/tex]
- False: [tex]\( x - y = y - x \)[/tex], [tex]\( (x - y) - z = x - (y - z) \)[/tex]
1. Commutativity of Addition:
[tex]\( x + y = y + x \)[/tex]
Addition of complex numbers is commutative:
[tex]\[ x + y = (a + bi) + (c + di) = (a + c) + (b + d)i \][/tex]
[tex]\[ y + x = (c + di) + (a + bi) = (c + a) + (d + b)i \][/tex]
Since addition in the real and imaginary parts is commutative, [tex]\( x + y = y + x \)[/tex] holds true.
This statement is true.
2. Associativity of Multiplication:
[tex]\( (x \times y) \times z = x \times (y \times z) \)[/tex]
Multiplication of complex numbers is associative:
[tex]\[ (x \times y) = (a + bi)(c + di) \][/tex]
By expanding, we get:
[tex]\[ (ac - bd) + (ad + bc)i \][/tex]
Similarly, we compute [tex]\( y \times z \)[/tex] and then multiply by [tex]\( x \)[/tex].
Without loss of generality, because each multiplication step follows associative properties, this leads us to the fact that:
[tex]\[ (x \times y) \times z = x \times (y \times z) \][/tex]
This statement is true.
3. Commutativity of Subtraction:
[tex]\( x - y = y - x \)[/tex]
Subtraction of complex numbers is not commutative:
[tex]\[ x - y = (a + bi) - (c + di) = (a - c) + (b - d)i \][/tex]
[tex]\[ y - x = (c + di) - (a + bi) = (c - a) + (d - b)i \][/tex]
Since [tex]\( a - c \neq c - a \)[/tex] and [tex]\( b - d \neq d - b \)[/tex], [tex]\( x - y \neq y - x \)[/tex].
This statement is false.
4. Associativity of Addition:
[tex]\( (x + y) + z = x + (y + z) \)[/tex]
Addition of complex numbers is associative:
[tex]\[ (x + y) + z = ((a + bi) + (c + di)) + (f + gi) = (a + c + f) + (b + d + g)i \][/tex]
[tex]\[ x + (y + z) = (a + bi) + ((c + di) + (f + gi)) = (a + c + f) + (b + d + g)i \][/tex]
Since both sides equate to [tex]\( (a + c + f) + (b + d + g)i \)[/tex], the property holds.
This statement is true.
5. Associativity of Subtraction:
[tex]\( (x - y) - z = x - (y - z) \)[/tex]
Subtraction of complex numbers is not associative:
[tex]\[ (x - y) - z = ((a + bi) - (c + di)) - (f + gi) = (a - c - f) + (b - d - g)i \][/tex]
[tex]\[ x - (y - z) = (a + bi) - ((c + di) - (f + gi)) = (a - c + f) + (b - d + g)i \][/tex]
Therefore, [tex]\( (a - c - f) + (b - d - g)i \)[/tex] does not equal [tex]\( (a - c + f) + (b - d + g)i \)[/tex].
This statement is false.
Based on the analysis:
- True: [tex]\( x + y = y + x \)[/tex], [tex]\( (x \times y) \times z = x \times (y \times z) \)[/tex], [tex]\( (x + y) + z = x + (y + z) \)[/tex]
- False: [tex]\( x - y = y - x \)[/tex], [tex]\( (x - y) - z = x - (y - z) \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.