Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the molarity of the given HCl solution by titrating it against a [tex]\(\left(\frac{M}{20}\right)\)[/tex] solution of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex], we can use the principles of stoichiometry and the balanced chemical equation.
### Balanced Chemical Equation:
The balanced chemical equation for the reaction between HCl and Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex] is:
[tex]\[2 \text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow 2 \text{NaCl} + \text{CO}_2 + \text{H}_2\text{O}\][/tex]
### Stoichiometry of the Reaction:
From the balanced equation, we see that 2 moles of HCl react with 1 mole of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex].
### Given Data:
1. Volume of HCl solution = [tex]\(1.0 \, \text{L}\)[/tex] (assuming 1L if not provided)
2. Molarity of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex] solution = [tex]\(\frac{1}{20} \, \text{M}\)[/tex]
### Determining the Molarity of HCl:
Since 2 moles of HCl react with 1 mole of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex]:
[tex]\[ \text{Molarity of HCl} = 2 \times \text{Molarity of Na}_2\text{CO}_3 \][/tex]
Substitute the given molarity of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex]:
[tex]\[ \text{Molarity of HCl} = 2 \times \left(\frac{1}{20}\right) \, \text{M} \][/tex]
Simplify the expression:
[tex]\[ \text{Molarity of HCl} = 2 \times 0.05 \, \text{M} \][/tex]
[tex]\[ \text{Molarity of HCl} = 0.1 \, \text{M} \][/tex]
Therefore, the molarity of the given HCl solution is [tex]\(0.1 \, \text{M}\)[/tex].
### Balanced Chemical Equation:
The balanced chemical equation for the reaction between HCl and Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex] is:
[tex]\[2 \text{HCl} + \text{Na}_2\text{CO}_3 \rightarrow 2 \text{NaCl} + \text{CO}_2 + \text{H}_2\text{O}\][/tex]
### Stoichiometry of the Reaction:
From the balanced equation, we see that 2 moles of HCl react with 1 mole of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex].
### Given Data:
1. Volume of HCl solution = [tex]\(1.0 \, \text{L}\)[/tex] (assuming 1L if not provided)
2. Molarity of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex] solution = [tex]\(\frac{1}{20} \, \text{M}\)[/tex]
### Determining the Molarity of HCl:
Since 2 moles of HCl react with 1 mole of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex]:
[tex]\[ \text{Molarity of HCl} = 2 \times \text{Molarity of Na}_2\text{CO}_3 \][/tex]
Substitute the given molarity of Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex]:
[tex]\[ \text{Molarity of HCl} = 2 \times \left(\frac{1}{20}\right) \, \text{M} \][/tex]
Simplify the expression:
[tex]\[ \text{Molarity of HCl} = 2 \times 0.05 \, \text{M} \][/tex]
[tex]\[ \text{Molarity of HCl} = 0.1 \, \text{M} \][/tex]
Therefore, the molarity of the given HCl solution is [tex]\(0.1 \, \text{M}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.