At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let's evaluate the limit of the function [tex]\(\frac{\sqrt{x+7}-2}{x+3}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex].
1. Substitute [tex]\(x = -3\)[/tex] into the function:
[tex]\[\frac{\sqrt{-3+7} - 2}{-3 + 3} = \frac{\sqrt{4} - 2}{0}\][/tex]
Simplifying inside the fraction,
[tex]\[\frac{2 - 2}{0} = \frac{0}{0}\][/tex]
This results in an indeterminate form, [tex]\(\frac{0}{0}\)[/tex]. To resolve this, we need to simplify the expression further.
2. Rationalizing the numerator:
To simplify [tex]\(\frac{\sqrt{x+7} - 2}{x+3}\)[/tex], we multiply the numerator and the denominator by the conjugate of the numerator, [tex]\(\sqrt{x+7} + 2\)[/tex]:
[tex]\[ \frac{\sqrt{x+7} - 2}{x+3} \cdot \frac{\sqrt{x+7} + 2}{\sqrt{x+7} + 2} \][/tex]
3. Simplify the result:
When we multiply the numerators and the denominators, we get:
[tex]\[ \frac{(\sqrt{x+7} - 2)(\sqrt{x+7} + 2)}{(x+3)(\sqrt{x+7} + 2)} \][/tex]
The numerator becomes a difference of squares:
[tex]\[ (\sqrt{x+7})^2 - 2^2 = (x + 7) - 4 = x + 3 \][/tex]
Therefore, the expression simplifies to:
[tex]\[ \frac{x+3}{(x+3)(\sqrt{x+7} + 2)} = \frac{1}{\sqrt{x+7} + 2} \][/tex]
4. Take the limit:
Now, we find the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]:
[tex]\[ \lim_{x \to -3} \frac{1}{\sqrt{x+7} + 2} \][/tex]
Substitute [tex]\(x = -3\)[/tex] into the simplified expression:
[tex]\[ \frac{1}{\sqrt{-3 + 7} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{2 + 2} = \frac{1}{4} \][/tex]
Therefore, the limit of [tex]\(\frac{\sqrt{x+7}-2}{x+3}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex] is [tex]\(\boxed{\frac{1}{4}}\)[/tex].
1. Substitute [tex]\(x = -3\)[/tex] into the function:
[tex]\[\frac{\sqrt{-3+7} - 2}{-3 + 3} = \frac{\sqrt{4} - 2}{0}\][/tex]
Simplifying inside the fraction,
[tex]\[\frac{2 - 2}{0} = \frac{0}{0}\][/tex]
This results in an indeterminate form, [tex]\(\frac{0}{0}\)[/tex]. To resolve this, we need to simplify the expression further.
2. Rationalizing the numerator:
To simplify [tex]\(\frac{\sqrt{x+7} - 2}{x+3}\)[/tex], we multiply the numerator and the denominator by the conjugate of the numerator, [tex]\(\sqrt{x+7} + 2\)[/tex]:
[tex]\[ \frac{\sqrt{x+7} - 2}{x+3} \cdot \frac{\sqrt{x+7} + 2}{\sqrt{x+7} + 2} \][/tex]
3. Simplify the result:
When we multiply the numerators and the denominators, we get:
[tex]\[ \frac{(\sqrt{x+7} - 2)(\sqrt{x+7} + 2)}{(x+3)(\sqrt{x+7} + 2)} \][/tex]
The numerator becomes a difference of squares:
[tex]\[ (\sqrt{x+7})^2 - 2^2 = (x + 7) - 4 = x + 3 \][/tex]
Therefore, the expression simplifies to:
[tex]\[ \frac{x+3}{(x+3)(\sqrt{x+7} + 2)} = \frac{1}{\sqrt{x+7} + 2} \][/tex]
4. Take the limit:
Now, we find the limit as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex]:
[tex]\[ \lim_{x \to -3} \frac{1}{\sqrt{x+7} + 2} \][/tex]
Substitute [tex]\(x = -3\)[/tex] into the simplified expression:
[tex]\[ \frac{1}{\sqrt{-3 + 7} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{2 + 2} = \frac{1}{4} \][/tex]
Therefore, the limit of [tex]\(\frac{\sqrt{x+7}-2}{x+3}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(-3\)[/tex] is [tex]\(\boxed{\frac{1}{4}}\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.