Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's solve the problem step-by-step.
Given that the number [tex]\( x \)[/tex] has been truncated to a whole number and the result is 16, the truncation implies removing the decimal part without rounding. This means the number [tex]\( x \)[/tex] is between 16 and just under 17.
### Step-by-Step Solution:
1. Understanding Truncation:
- When we truncate a number to the whole number 16, this implies that [tex]\( x \)[/tex] is at least 16 because truncating any number between 16 (inclusive) and 17 (exclusive) results in 16.
2. Defining the Interval:
- Therefore, the lower bound of [tex]\( x \)[/tex] is 16.
- The upper bound of [tex]\( x \)[/tex] is just less than 17, since if [tex]\( x \)[/tex] were 17 or more, its truncated whole number would be 17, not 16.
3. Expressing the Error Interval:
- Combining these bounds together, the interval can be written as:
[tex]\[ 16 \leq x < 17 \][/tex]
Thus, the error interval for [tex]\( x \)[/tex] is:
[tex]\[ 16 \leq x < 17 \][/tex]
This properly captures the set of all numbers that would truncate to 16 when the decimal portion is removed.
Given that the number [tex]\( x \)[/tex] has been truncated to a whole number and the result is 16, the truncation implies removing the decimal part without rounding. This means the number [tex]\( x \)[/tex] is between 16 and just under 17.
### Step-by-Step Solution:
1. Understanding Truncation:
- When we truncate a number to the whole number 16, this implies that [tex]\( x \)[/tex] is at least 16 because truncating any number between 16 (inclusive) and 17 (exclusive) results in 16.
2. Defining the Interval:
- Therefore, the lower bound of [tex]\( x \)[/tex] is 16.
- The upper bound of [tex]\( x \)[/tex] is just less than 17, since if [tex]\( x \)[/tex] were 17 or more, its truncated whole number would be 17, not 16.
3. Expressing the Error Interval:
- Combining these bounds together, the interval can be written as:
[tex]\[ 16 \leq x < 17 \][/tex]
Thus, the error interval for [tex]\( x \)[/tex] is:
[tex]\[ 16 \leq x < 17 \][/tex]
This properly captures the set of all numbers that would truncate to 16 when the decimal portion is removed.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.