At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the approximate change in the volume of a cube when its sides are increased by 1%, we can follow a series of logical steps.
### Step 1: Initial Volume Calculation
First, let's assume the initial side length of the cube is [tex]\( x \)[/tex] meters.
The volume of a cube is given by:
[tex]\[ V_{\text{initial}} = x^3 \][/tex]
### Step 2: New Side Length Calculation
If each side of the cube is increased by 1%, the new side length becomes:
[tex]\[ x_{\text{new}} = x \times 1.01 \][/tex]
### Step 3: New Volume Calculation
With the new side length, the volume of the cube can be calculated as:
[tex]\[ V_{\text{new}} = (x \times 1.01)^3 \][/tex]
### Step 4: Change in Volume Calculation
The change in the volume ([tex]\(\Delta V\)[/tex]) is the difference between the new volume and the initial volume:
[tex]\[ \Delta V = V_{\text{new}} - V_{\text{initial}} \][/tex]
### Step 5: Percentage Increment in Volume
The percentage increment in the volume is calculated by:
[tex]\[ \text{Percentage Increment} = \left(\frac{\Delta V}{V_{\text{initial}}}\right) \times 100 \][/tex]
### Applying Values
- Initial Volume: Assume [tex]\( x = 1 \)[/tex] meter.
[tex]\[ V_{\text{initial}} = 1^3 = 1 \text{ cubic meter} \][/tex]
- New Side Length:
[tex]\[ x_{\text{new}} = 1 \times 1.01 = 1.01 \text{ meters} \][/tex]
- New Volume:
[tex]\[ V_{\text{new}} = (1.01)^3 = 1.030301 \text{ cubic meters} \][/tex]
- Change in Volume:
[tex]\[ \Delta V = 1.030301 - 1 = 0.030301 \text{ cubic meters} \][/tex]
- Percentage Increment:
[tex]\[ \text{Percentage Increment} = \left(\frac{0.030301}{1}\right) \times 100 = 3.0301\% \][/tex]
### Conclusion
The approximate change in the volume of a cube with a side [tex]\( x \)[/tex] meters, when the sides are increased by 1%, is approximately [tex]\( 0.030301 \)[/tex] cubic meters. The percentage increment in the volume is approximately [tex]\( 3.0301\% \)[/tex].
### Step 1: Initial Volume Calculation
First, let's assume the initial side length of the cube is [tex]\( x \)[/tex] meters.
The volume of a cube is given by:
[tex]\[ V_{\text{initial}} = x^3 \][/tex]
### Step 2: New Side Length Calculation
If each side of the cube is increased by 1%, the new side length becomes:
[tex]\[ x_{\text{new}} = x \times 1.01 \][/tex]
### Step 3: New Volume Calculation
With the new side length, the volume of the cube can be calculated as:
[tex]\[ V_{\text{new}} = (x \times 1.01)^3 \][/tex]
### Step 4: Change in Volume Calculation
The change in the volume ([tex]\(\Delta V\)[/tex]) is the difference between the new volume and the initial volume:
[tex]\[ \Delta V = V_{\text{new}} - V_{\text{initial}} \][/tex]
### Step 5: Percentage Increment in Volume
The percentage increment in the volume is calculated by:
[tex]\[ \text{Percentage Increment} = \left(\frac{\Delta V}{V_{\text{initial}}}\right) \times 100 \][/tex]
### Applying Values
- Initial Volume: Assume [tex]\( x = 1 \)[/tex] meter.
[tex]\[ V_{\text{initial}} = 1^3 = 1 \text{ cubic meter} \][/tex]
- New Side Length:
[tex]\[ x_{\text{new}} = 1 \times 1.01 = 1.01 \text{ meters} \][/tex]
- New Volume:
[tex]\[ V_{\text{new}} = (1.01)^3 = 1.030301 \text{ cubic meters} \][/tex]
- Change in Volume:
[tex]\[ \Delta V = 1.030301 - 1 = 0.030301 \text{ cubic meters} \][/tex]
- Percentage Increment:
[tex]\[ \text{Percentage Increment} = \left(\frac{0.030301}{1}\right) \times 100 = 3.0301\% \][/tex]
### Conclusion
The approximate change in the volume of a cube with a side [tex]\( x \)[/tex] meters, when the sides are increased by 1%, is approximately [tex]\( 0.030301 \)[/tex] cubic meters. The percentage increment in the volume is approximately [tex]\( 3.0301\% \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.