Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the coordinates of the vertices of the pre-image trapezoid [tex]\( ABCD \)[/tex] that were mapped to the final image [tex]\( A"B"C"D" \)[/tex] by the transformation [tex]\((r_{r.1} \circ T_{4, 0})(x, y)\)[/tex], we need to reverse the transformation step by step.
The given transformation rule is a combination of two steps:
1. A rotation [tex]\( r_{r.1} \)[/tex] which rotates the point 90 degrees counter-clockwise.
2. A translation [tex]\( T_{4,0} \)[/tex] which translates the point by the vector (4, 0).
### Step-by-Step Explanation:
1. Define the transformations:
- Rotation [tex]\( r_{r.1} \)[/tex]:
Rotation by 90 degrees counter-clockwise can be represented as:
[tex]\[ R(x, y) = (-y, x) \][/tex]
- Translation [tex]\( T_{4,0} \)[/tex]:
Translation by the vector (4, 0) can be represented as:
[tex]\[ T_{4,0}(x, y) = (x + 4, y) \][/tex]
2. Combined Transformation:
Apply the rotation first and then the translation:
[tex]\[ (r_{r.1} \circ T_{4,0})(x, y) = T_{4,0}(R(x, y)) = T_{4,0}(-y, x) \][/tex]
This gives:
[tex]\[ (r_{r.1} \circ T_{4,0})(x, y) = (-y + 4, x) \][/tex]
3. Finding the Pre-image:
We need to determine which of the provided coordinate pairs, when transformed, match the coordinates of the vertices in the final image [tex]\( A"B"C"D" \)[/tex]. According to the problem, the transformed vertices are [tex]\( (3, 4), (9, 4), (9, -1), (3, -1) \)[/tex].
Let's check each option:
- For the pair [tex]\((-1, 0)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(-1, 0) = (0 + 4, -1) = (4, -1) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((-1, -5)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(-1, -5) = (5 + 4, -1) = (9, -1) \][/tex]
Matching the final vertex [tex]\( (9, -1) \)[/tex].
- For the pair [tex]\((1, 1)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(1, 1) = (-1 + 4, 1) = (3, 1) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((7, 0)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(7, 0) = (0 + 4, 7) = (4, 7) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((7, -5)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(7, -5) = (5 + 4, 7) = (9, 7) \][/tex]
Not matching any final vertices.
The only pair that matches one of the final vertices [tex]\( (9, -1) \)[/tex] is [tex]\((-1, -5)\)[/tex].
### Conclusion:
The ordered pair that names the coordinates of the vertices of the pre-image trapezoid [tex]\( ABCD \)[/tex] is:
[tex]\[ (-1, -5) \][/tex]
We should select this option as the pre-image vertex (out of the provided coordinate options) that produced a vertex of the final image [tex]\( A"B"C"D" \)[/tex].
The given transformation rule is a combination of two steps:
1. A rotation [tex]\( r_{r.1} \)[/tex] which rotates the point 90 degrees counter-clockwise.
2. A translation [tex]\( T_{4,0} \)[/tex] which translates the point by the vector (4, 0).
### Step-by-Step Explanation:
1. Define the transformations:
- Rotation [tex]\( r_{r.1} \)[/tex]:
Rotation by 90 degrees counter-clockwise can be represented as:
[tex]\[ R(x, y) = (-y, x) \][/tex]
- Translation [tex]\( T_{4,0} \)[/tex]:
Translation by the vector (4, 0) can be represented as:
[tex]\[ T_{4,0}(x, y) = (x + 4, y) \][/tex]
2. Combined Transformation:
Apply the rotation first and then the translation:
[tex]\[ (r_{r.1} \circ T_{4,0})(x, y) = T_{4,0}(R(x, y)) = T_{4,0}(-y, x) \][/tex]
This gives:
[tex]\[ (r_{r.1} \circ T_{4,0})(x, y) = (-y + 4, x) \][/tex]
3. Finding the Pre-image:
We need to determine which of the provided coordinate pairs, when transformed, match the coordinates of the vertices in the final image [tex]\( A"B"C"D" \)[/tex]. According to the problem, the transformed vertices are [tex]\( (3, 4), (9, 4), (9, -1), (3, -1) \)[/tex].
Let's check each option:
- For the pair [tex]\((-1, 0)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(-1, 0) = (0 + 4, -1) = (4, -1) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((-1, -5)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(-1, -5) = (5 + 4, -1) = (9, -1) \][/tex]
Matching the final vertex [tex]\( (9, -1) \)[/tex].
- For the pair [tex]\((1, 1)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(1, 1) = (-1 + 4, 1) = (3, 1) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((7, 0)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(7, 0) = (0 + 4, 7) = (4, 7) \][/tex]
Not matching any final vertices.
- For the pair [tex]\((7, -5)\)[/tex]:
[tex]\[ (r_{r.1} \circ T_{4, 0})(7, -5) = (5 + 4, 7) = (9, 7) \][/tex]
Not matching any final vertices.
The only pair that matches one of the final vertices [tex]\( (9, -1) \)[/tex] is [tex]\((-1, -5)\)[/tex].
### Conclusion:
The ordered pair that names the coordinates of the vertices of the pre-image trapezoid [tex]\( ABCD \)[/tex] is:
[tex]\[ (-1, -5) \][/tex]
We should select this option as the pre-image vertex (out of the provided coordinate options) that produced a vertex of the final image [tex]\( A"B"C"D" \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.