At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's find the direction of the vector sum [tex]\(\vec{A} + \vec{B}\)[/tex] given the vectors [tex]\( \vec{A} \)[/tex] and [tex]\( \vec{B} \)[/tex].
### Steps to Find the Direction of the Vector Sum
1. Decompose Each Vector into Components:
We start by decomposing vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] into their respective x and y components using trigonometry.
- For vector [tex]\(\vec{A}\)[/tex] with magnitude [tex]\(85.0 \, \text{m}\)[/tex] and angle [tex]\(0^\circ\)[/tex]:
[tex]\[ A_x = A \cos(\theta_A) = 85.0 \cos(0^\circ) = 85.0 \][/tex]
[tex]\[ A_y = A \sin(\theta_A) = 85.0 \sin(0^\circ) = 0.0 \][/tex]
- For vector [tex]\(\vec{B}\)[/tex] with magnitude [tex]\(101.0 \, \text{m}\)[/tex] and angle [tex]\(60^\circ\)[/tex]:
[tex]\[ B_x = B \cos(\theta_B) = 101 \cos(60^\circ) \approx 50.5 \][/tex]
[tex]\[ B_y = B \sin(\theta_B) = 101 \sin(60^\circ) \approx 87.47 \][/tex]
2. Calculate the Components of the Vector Sum:
We sum the x and y components of vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]:
[tex]\[ \text{Sum}_x = A_x + B_x = 85.0 + 50.5 = 135.5 \][/tex]
[tex]\[ \text{Sum}_y = A_y + B_y = 0.0 + 87.47 = 87.47 \][/tex]
3. Calculate the Direction of the Vector Sum:
The direction (or angle) of the vector sum [tex]\(\theta_{\text{sum}}\)[/tex] can be found using the inverse tangent function [tex]\(\tan^{-2}\)[/tex]:
[tex]\[ \theta_{\text{sum}} = \tan^{-1} \left( \frac{\text{Sum}_y}{\text{Sum}_x} \right) \][/tex]
Plug in the values:
[tex]\[ \theta_{\text{sum}} = \tan^{-2} \left( \frac{87.47}{135.5} \right) \approx 32.84^\circ \][/tex]
Thus, the direction of the vector sum [tex]\(\vec{A} + \vec{B}\)[/tex] is approximately [tex]\(32.84^\circ\)[/tex].
### Steps to Find the Direction of the Vector Sum
1. Decompose Each Vector into Components:
We start by decomposing vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] into their respective x and y components using trigonometry.
- For vector [tex]\(\vec{A}\)[/tex] with magnitude [tex]\(85.0 \, \text{m}\)[/tex] and angle [tex]\(0^\circ\)[/tex]:
[tex]\[ A_x = A \cos(\theta_A) = 85.0 \cos(0^\circ) = 85.0 \][/tex]
[tex]\[ A_y = A \sin(\theta_A) = 85.0 \sin(0^\circ) = 0.0 \][/tex]
- For vector [tex]\(\vec{B}\)[/tex] with magnitude [tex]\(101.0 \, \text{m}\)[/tex] and angle [tex]\(60^\circ\)[/tex]:
[tex]\[ B_x = B \cos(\theta_B) = 101 \cos(60^\circ) \approx 50.5 \][/tex]
[tex]\[ B_y = B \sin(\theta_B) = 101 \sin(60^\circ) \approx 87.47 \][/tex]
2. Calculate the Components of the Vector Sum:
We sum the x and y components of vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]:
[tex]\[ \text{Sum}_x = A_x + B_x = 85.0 + 50.5 = 135.5 \][/tex]
[tex]\[ \text{Sum}_y = A_y + B_y = 0.0 + 87.47 = 87.47 \][/tex]
3. Calculate the Direction of the Vector Sum:
The direction (or angle) of the vector sum [tex]\(\theta_{\text{sum}}\)[/tex] can be found using the inverse tangent function [tex]\(\tan^{-2}\)[/tex]:
[tex]\[ \theta_{\text{sum}} = \tan^{-1} \left( \frac{\text{Sum}_y}{\text{Sum}_x} \right) \][/tex]
Plug in the values:
[tex]\[ \theta_{\text{sum}} = \tan^{-2} \left( \frac{87.47}{135.5} \right) \approx 32.84^\circ \][/tex]
Thus, the direction of the vector sum [tex]\(\vec{A} + \vec{B}\)[/tex] is approximately [tex]\(32.84^\circ\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.