Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Instructions: Classify the polynomial expression by the degree.

[tex]r - r^3 + 9r^2[/tex]

Degree: [tex]\square[/tex]


Sagot :

To classify a polynomial by its degree, we need to identify the highest power of the variable within the expression. Let's break down the given polynomial expression:

[tex]\[ r - r^3 + 9r^2 \][/tex]

We will analyze each term in the polynomial individually:

1. The first term is [tex]\( r \)[/tex], which has a degree of 1.
2. The second term is [tex]\( -r^3 \)[/tex], which has a degree of 3.
3. The third term is [tex]\( 9r^2 \)[/tex], which has a degree of 2.

The degree of a polynomial is defined as the highest degree of its individual terms. Therefore, from the terms [tex]\( r \)[/tex] (degree 1), [tex]\( -r^3 \)[/tex] (degree 3), and [tex]\( 9r^2 \)[/tex] (degree 2), the highest degree is 3.

Hence, the degree of the polynomial [tex]\( r - r^3 + 9r^2 \)[/tex] is:

[tex]\[ \boxed{3} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.