At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's go through the steps to calculate the equilibrium constant [tex]\( K_c \)[/tex] for the given chemical reaction in a detailed manner.
Given data:
- [tex]\( [\text{CH}_3\text{COOC}_2\text{H}_5] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{H}_2\text{O}] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{CH}_3\text{COOH}] = \frac{1}{3} \)[/tex]
- [tex]\( [\text{C}_2\text{H}_5\text{OH}] = \frac{1}{3} \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for a reaction is given by the equation:
[tex]\[ K_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
Substituting in the concentrations:
[tex]\[ K_c = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]} \][/tex]
We need to perform the multiplications and the division step-by-step:
1. Calculate the numerator:
[tex]\[ \left[\text{CH}_3\text{COOC}_2\text{H}_5\right] \times \left[\text{H}_2\text{O}\right] = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) = \frac{4}{9} \][/tex]
2. Calculate the denominator:
[tex]\[ \left[\text{CH}_3\text{COOH}\right] \times \left[\text{C}_2\text{H}_5\text{OH}\right] = \left(\frac{1}{3}\right) \times \left(\frac{1}{3}\right) = \frac{1}{9} \][/tex]
3. Divide the numerator by the denominator to obtain [tex]\( K_c \)[/tex]:
[tex]\[ K_c = \frac{\frac{4}{9}}{\frac{1}{9}} = \frac{4}{9} \times \frac{9}{1} = 4 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is:
[tex]\[ K_c = 4 \][/tex]
So, in summary, we've found the equilibrium constant step-by-step from the given concentrations of the reactants and products.
Given data:
- [tex]\( [\text{CH}_3\text{COOC}_2\text{H}_5] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{H}_2\text{O}] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{CH}_3\text{COOH}] = \frac{1}{3} \)[/tex]
- [tex]\( [\text{C}_2\text{H}_5\text{OH}] = \frac{1}{3} \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for a reaction is given by the equation:
[tex]\[ K_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
Substituting in the concentrations:
[tex]\[ K_c = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]} \][/tex]
We need to perform the multiplications and the division step-by-step:
1. Calculate the numerator:
[tex]\[ \left[\text{CH}_3\text{COOC}_2\text{H}_5\right] \times \left[\text{H}_2\text{O}\right] = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) = \frac{4}{9} \][/tex]
2. Calculate the denominator:
[tex]\[ \left[\text{CH}_3\text{COOH}\right] \times \left[\text{C}_2\text{H}_5\text{OH}\right] = \left(\frac{1}{3}\right) \times \left(\frac{1}{3}\right) = \frac{1}{9} \][/tex]
3. Divide the numerator by the denominator to obtain [tex]\( K_c \)[/tex]:
[tex]\[ K_c = \frac{\frac{4}{9}}{\frac{1}{9}} = \frac{4}{9} \times \frac{9}{1} = 4 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is:
[tex]\[ K_c = 4 \][/tex]
So, in summary, we've found the equilibrium constant step-by-step from the given concentrations of the reactants and products.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.