Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's go through the steps to calculate the equilibrium constant [tex]\( K_c \)[/tex] for the given chemical reaction in a detailed manner.
Given data:
- [tex]\( [\text{CH}_3\text{COOC}_2\text{H}_5] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{H}_2\text{O}] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{CH}_3\text{COOH}] = \frac{1}{3} \)[/tex]
- [tex]\( [\text{C}_2\text{H}_5\text{OH}] = \frac{1}{3} \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for a reaction is given by the equation:
[tex]\[ K_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
Substituting in the concentrations:
[tex]\[ K_c = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]} \][/tex]
We need to perform the multiplications and the division step-by-step:
1. Calculate the numerator:
[tex]\[ \left[\text{CH}_3\text{COOC}_2\text{H}_5\right] \times \left[\text{H}_2\text{O}\right] = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) = \frac{4}{9} \][/tex]
2. Calculate the denominator:
[tex]\[ \left[\text{CH}_3\text{COOH}\right] \times \left[\text{C}_2\text{H}_5\text{OH}\right] = \left(\frac{1}{3}\right) \times \left(\frac{1}{3}\right) = \frac{1}{9} \][/tex]
3. Divide the numerator by the denominator to obtain [tex]\( K_c \)[/tex]:
[tex]\[ K_c = \frac{\frac{4}{9}}{\frac{1}{9}} = \frac{4}{9} \times \frac{9}{1} = 4 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is:
[tex]\[ K_c = 4 \][/tex]
So, in summary, we've found the equilibrium constant step-by-step from the given concentrations of the reactants and products.
Given data:
- [tex]\( [\text{CH}_3\text{COOC}_2\text{H}_5] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{H}_2\text{O}] = \frac{2}{3} \)[/tex]
- [tex]\( [\text{CH}_3\text{COOH}] = \frac{1}{3} \)[/tex]
- [tex]\( [\text{C}_2\text{H}_5\text{OH}] = \frac{1}{3} \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] for a reaction is given by the equation:
[tex]\[ K_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
Substituting in the concentrations:
[tex]\[ K_c = \frac{[\text{CH}_3\text{COOC}_2\text{H}_5][\text{H}_2\text{O}]}{[\text{CH}_3\text{COOH}][\text{C}_2\text{H}_5\text{OH}]} \][/tex]
We need to perform the multiplications and the division step-by-step:
1. Calculate the numerator:
[tex]\[ \left[\text{CH}_3\text{COOC}_2\text{H}_5\right] \times \left[\text{H}_2\text{O}\right] = \left(\frac{2}{3}\right) \times \left(\frac{2}{3}\right) = \frac{4}{9} \][/tex]
2. Calculate the denominator:
[tex]\[ \left[\text{CH}_3\text{COOH}\right] \times \left[\text{C}_2\text{H}_5\text{OH}\right] = \left(\frac{1}{3}\right) \times \left(\frac{1}{3}\right) = \frac{1}{9} \][/tex]
3. Divide the numerator by the denominator to obtain [tex]\( K_c \)[/tex]:
[tex]\[ K_c = \frac{\frac{4}{9}}{\frac{1}{9}} = \frac{4}{9} \times \frac{9}{1} = 4 \][/tex]
Therefore, the equilibrium constant [tex]\( K_c \)[/tex] for the reaction is:
[tex]\[ K_c = 4 \][/tex]
So, in summary, we've found the equilibrium constant step-by-step from the given concentrations of the reactants and products.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.