Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's consider the integrand given in the question:
[tex]\[ \int \sin(x) e^{\cos(x)} \, dx \][/tex]
We need to find the integral of this expression. Here's a step-by-step explanation of how to approach this type of integral:
### Step-by-Step Solution
1. Identify the form of the integrand:
The integrand is [tex]\(\sin(x) e^{\cos(x)}\)[/tex]. Notice that this expression has both a trigonometric function ([tex]\(\sin(x)\)[/tex]) and an exponential function ([tex]\(e^{\cos(x)}\)[/tex]).
2. Use substitution:
A common approach for integrals involving trigonometric functions and exponentials is to use substitution. Let's set
[tex]\[ u = \cos(x) \][/tex]
Then, taking the derivative of [tex]\(u\)[/tex] with respect to [tex]\(x\)[/tex],
[tex]\[ du = -\sin(x) \, dx \quad \Rightarrow \quad -du = \sin(x) \, dx \][/tex]
3. Rewrite the integral:
Substitute [tex]\(u = \cos(x)\)[/tex] and [tex]\(du = -\sin(x) \, dx\)[/tex] into the integral.
[tex]\[ \int \sin(x) e^{\cos(x)} \, dx = \int e^u (-du) \][/tex]
Simplifying,
[tex]\[ \int e^u (-du) = -\int e^u \, du \][/tex]
4. Integrate:
The integral of [tex]\(e^u\)[/tex] with respect to [tex]\(u\)[/tex] is simply [tex]\(e^u\)[/tex].
[tex]\[ -\int e^u \, du = -e^u + C \][/tex]
5. Substitute back to the original variable:
Recall that [tex]\(u = \cos(x)\)[/tex], so
[tex]\[ -e^u + C = -e^{\cos(x)} + C \][/tex]
So, the integral of [tex]\(\sin(x) e^{\cos(x)} \, dx\)[/tex] is:
[tex]\[ - e^{\cos(x)} + C \][/tex]
Given in the options is [tex]\(- e^{\cos(x)} e^{\sin(x)}\)[/tex], which can be interpreted like:
On comparing with the options provided, we see that:
- Option 2: [tex]\(-e^{\cos(x)}\)[/tex] appears as the correct integral.
- The function [tex]\(e^{\sin(x)} - e^{\cos(x)}\)[/tex].
Thus, the detailed answer is:
The integral of [tex]\(\sin(x) e^{\cos(x)} \, dx\)[/tex] is:
Option 2: [tex]\(-e^{\cos(x)}\)[/tex]
[tex]\[ \int \sin(x) e^{\cos(x)} \, dx \][/tex]
We need to find the integral of this expression. Here's a step-by-step explanation of how to approach this type of integral:
### Step-by-Step Solution
1. Identify the form of the integrand:
The integrand is [tex]\(\sin(x) e^{\cos(x)}\)[/tex]. Notice that this expression has both a trigonometric function ([tex]\(\sin(x)\)[/tex]) and an exponential function ([tex]\(e^{\cos(x)}\)[/tex]).
2. Use substitution:
A common approach for integrals involving trigonometric functions and exponentials is to use substitution. Let's set
[tex]\[ u = \cos(x) \][/tex]
Then, taking the derivative of [tex]\(u\)[/tex] with respect to [tex]\(x\)[/tex],
[tex]\[ du = -\sin(x) \, dx \quad \Rightarrow \quad -du = \sin(x) \, dx \][/tex]
3. Rewrite the integral:
Substitute [tex]\(u = \cos(x)\)[/tex] and [tex]\(du = -\sin(x) \, dx\)[/tex] into the integral.
[tex]\[ \int \sin(x) e^{\cos(x)} \, dx = \int e^u (-du) \][/tex]
Simplifying,
[tex]\[ \int e^u (-du) = -\int e^u \, du \][/tex]
4. Integrate:
The integral of [tex]\(e^u\)[/tex] with respect to [tex]\(u\)[/tex] is simply [tex]\(e^u\)[/tex].
[tex]\[ -\int e^u \, du = -e^u + C \][/tex]
5. Substitute back to the original variable:
Recall that [tex]\(u = \cos(x)\)[/tex], so
[tex]\[ -e^u + C = -e^{\cos(x)} + C \][/tex]
So, the integral of [tex]\(\sin(x) e^{\cos(x)} \, dx\)[/tex] is:
[tex]\[ - e^{\cos(x)} + C \][/tex]
Given in the options is [tex]\(- e^{\cos(x)} e^{\sin(x)}\)[/tex], which can be interpreted like:
On comparing with the options provided, we see that:
- Option 2: [tex]\(-e^{\cos(x)}\)[/tex] appears as the correct integral.
- The function [tex]\(e^{\sin(x)} - e^{\cos(x)}\)[/tex].
Thus, the detailed answer is:
The integral of [tex]\(\sin(x) e^{\cos(x)} \, dx\)[/tex] is:
Option 2: [tex]\(-e^{\cos(x)}\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.