Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the revenue function and the flat fee for delivery, we start with the given equation:
[tex]\[ y - 3000 = 0.25(x - 10000) \][/tex]
1. Simplify the given equation to get the revenue function:
Begin by distributing the [tex]$0.25$[/tex] on the right-hand side:
[tex]\[ y - 3000 = 0.25x - 2500 \][/tex]
Next, isolate [tex]$y$[/tex] by adding [tex]$3000$[/tex] to both sides of the equation:
[tex]\[ y = 0.25x - 2500 + 3000 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 0.25x + 500 \][/tex]
Thus, the revenue function in terms of the number of tiles sold ([tex]$x$[/tex]) is:
[tex]\[ y = 0.25x + 500 \][/tex]
2. Identify the flat fee for delivery:
The flat fee for delivery is the constant term in the revenue function (the term that does not depend on [tex]$x$[/tex]). In the revenue function [tex]$y = 0.25x + 500$[/tex], the term [tex]$500$[/tex] represents the flat fee for delivery.
Therefore,
- The function that describes the revenue of the tile factory in terms of tiles sold is:
[tex]\[ y = 0.25x + 500 \][/tex]
- The flat fee for delivery is:
[tex]\[ \$500 \][/tex]
[tex]\[ y - 3000 = 0.25(x - 10000) \][/tex]
1. Simplify the given equation to get the revenue function:
Begin by distributing the [tex]$0.25$[/tex] on the right-hand side:
[tex]\[ y - 3000 = 0.25x - 2500 \][/tex]
Next, isolate [tex]$y$[/tex] by adding [tex]$3000$[/tex] to both sides of the equation:
[tex]\[ y = 0.25x - 2500 + 3000 \][/tex]
Simplify the right-hand side:
[tex]\[ y = 0.25x + 500 \][/tex]
Thus, the revenue function in terms of the number of tiles sold ([tex]$x$[/tex]) is:
[tex]\[ y = 0.25x + 500 \][/tex]
2. Identify the flat fee for delivery:
The flat fee for delivery is the constant term in the revenue function (the term that does not depend on [tex]$x$[/tex]). In the revenue function [tex]$y = 0.25x + 500$[/tex], the term [tex]$500$[/tex] represents the flat fee for delivery.
Therefore,
- The function that describes the revenue of the tile factory in terms of tiles sold is:
[tex]\[ y = 0.25x + 500 \][/tex]
- The flat fee for delivery is:
[tex]\[ \$500 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.