At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine whether the given points form the vertices of a rhombus, we need to show that all sides of each quadrilateral are of equal length. Let's begin by analyzing each set of points step-by-step.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.