At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether the given points form the vertices of a rhombus, we need to show that all sides of each quadrilateral are of equal length. Let's begin by analyzing each set of points step-by-step.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.