Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the given points form the vertices of a rhombus, we need to show that all sides of each quadrilateral are of equal length. Let's begin by analyzing each set of points step-by-step.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
### Part a: Quadrilateral with vertices (2,3), (5,8), (0,5), (-3,0)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (2, 3) and (5, 8):
[tex]\[ d_1 = \sqrt{(5 - 2)^2 + (8 - 3)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (5, 8) and (0, 5):
[tex]\[ d_2 = \sqrt{(0 - 5)^2 + (5 - 8)^2} = \sqrt{(-5)^2 + (-3)^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
- Distance between (0, 5) and (-3, 0):
[tex]\[ d_3 = \sqrt{(0 - (-3))^2 + (5 - 0)^2} = \sqrt{3^2 + 5^2} = \sqrt{9 + 25} = \sqrt{34} \][/tex]
- Distance between (-3, 0) and (2, 3):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (3 - 0)^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = d_2 = d_3 = d_4 = \sqrt{34} \][/tex]
Since the distances between each pair of consecutive vertices are all equal, the quadrilateral formed by the points [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
### Part b: Quadrilateral with vertices (-3,-2), (-2,3), (3,4), (2,1)
1. Calculate the distances between each pair of consecutive vertices:
- Distance between (-3, -2) and (-2, 3):
[tex]\[ d_1 = \sqrt{(-2 - (-3))^2 + (3 - (-2))^2} = \sqrt{1^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26} \][/tex]
- Distance between (-2, 3) and (3, 4):
[tex]\[ d_2 = \sqrt{(3 - (-2))^2 + (4 - 3)^2} = \sqrt{5^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]
- Distance between (3, 4) and (2, 1):
[tex]\[ d_3 = \sqrt{(2 - 3)^2 + (1 - 4)^2} = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1 + 9} = \sqrt{10} \][/tex]
- Distance between (2, 1) and (-3, -2):
[tex]\[ d_4 = \sqrt{(2 - (-3))^2 + (1 - (-2))^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34} \][/tex]
2. Evaluate whether all four distances are equal:
[tex]\[ d_1 = \sqrt{26}, \quad d_2 = \sqrt{26}, \quad d_3 = \sqrt{10}, \quad d_4 = \sqrt{34} \][/tex]
Since the distances between the vertices are not all equal, the quadrilateral formed by the points [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] does not have all sides of equal length and therefore is not a rhombus.
### Conclusion:
- The quadrilateral with vertices [tex]\((2, 3)\)[/tex], [tex]\((5, 8)\)[/tex], [tex]\((0, 5)\)[/tex], and [tex]\((-3, 0)\)[/tex] is a rhombus.
- The quadrilateral with vertices [tex]\((-3, -2)\)[/tex], [tex]\((-2, 3)\)[/tex], [tex]\((3, 4)\)[/tex], and [tex]\((2, 1)\)[/tex] is not a rhombus.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.