Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's examine the given functions [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = \frac{2}{3} x^2 \)[/tex]. We need to determine how the graph of [tex]\( g(x) \)[/tex] compares with the graph of [tex]\( f(x) \)[/tex].
1. Function Forms:
- [tex]\( f(x) = x^2 \)[/tex] is a standard quadratic function with a vertex at the origin [tex]\((0, 0)\)[/tex] and a parabola opening upwards.
- [tex]\( g(x) = \frac{2}{3} x^2 \)[/tex] is also a quadratic function, but with a coefficient in front of the [tex]\( x^2 \)[/tex] term that affects the shape of the parabola.
2. Comparison of Coefficients:
- The coefficient of [tex]\( x^2 \)[/tex] in [tex]\( f(x) \)[/tex] is [tex]\( 1 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] in [tex]\( g(x) \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
- Since [tex]\( \frac{2}{3} \)[/tex] is less than [tex]\( 1 \)[/tex], this means that the graph of [tex]\( g(x) \)[/tex] compared to [tex]\( f(x) \)[/tex] will be affected in the vertical direction.
3. Vertical Compression and Stretch:
- If the coefficient is greater than [tex]\( 1 \)[/tex], the graph stretches vertically.
- If the coefficient is between [tex]\( 0 \)[/tex] and [tex]\( 1 \)[/tex], the graph compresses vertically.
- If the coefficient were negative, the graph would flip over the [tex]\( x \)[/tex]-axis, but the absence of a negative sign in [tex]\( \frac{2}{3} \)[/tex] indicates no flipping occurs here.
4. Conclusion:
- By comparing the coefficients, [tex]\( g(x) = \frac{2}{3} x^2 \)[/tex] compresses the graph of [tex]\( f(x) = x^2 \)[/tex] vertically because the coefficient [tex]\( \frac{2}{3} \)[/tex] is less than [tex]\( 1 \)[/tex].
- There is no vertical flipping as the coefficient is positive.
So, the correct statement that best compares the graph of [tex]\( g(x) \)[/tex] with the graph of [tex]\( f(x) \)[/tex] is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] compressed vertically.
1. Function Forms:
- [tex]\( f(x) = x^2 \)[/tex] is a standard quadratic function with a vertex at the origin [tex]\((0, 0)\)[/tex] and a parabola opening upwards.
- [tex]\( g(x) = \frac{2}{3} x^2 \)[/tex] is also a quadratic function, but with a coefficient in front of the [tex]\( x^2 \)[/tex] term that affects the shape of the parabola.
2. Comparison of Coefficients:
- The coefficient of [tex]\( x^2 \)[/tex] in [tex]\( f(x) \)[/tex] is [tex]\( 1 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] in [tex]\( g(x) \)[/tex] is [tex]\( \frac{2}{3} \)[/tex].
- Since [tex]\( \frac{2}{3} \)[/tex] is less than [tex]\( 1 \)[/tex], this means that the graph of [tex]\( g(x) \)[/tex] compared to [tex]\( f(x) \)[/tex] will be affected in the vertical direction.
3. Vertical Compression and Stretch:
- If the coefficient is greater than [tex]\( 1 \)[/tex], the graph stretches vertically.
- If the coefficient is between [tex]\( 0 \)[/tex] and [tex]\( 1 \)[/tex], the graph compresses vertically.
- If the coefficient were negative, the graph would flip over the [tex]\( x \)[/tex]-axis, but the absence of a negative sign in [tex]\( \frac{2}{3} \)[/tex] indicates no flipping occurs here.
4. Conclusion:
- By comparing the coefficients, [tex]\( g(x) = \frac{2}{3} x^2 \)[/tex] compresses the graph of [tex]\( f(x) = x^2 \)[/tex] vertically because the coefficient [tex]\( \frac{2}{3} \)[/tex] is less than [tex]\( 1 \)[/tex].
- There is no vertical flipping as the coefficient is positive.
So, the correct statement that best compares the graph of [tex]\( g(x) \)[/tex] with the graph of [tex]\( f(x) \)[/tex] is:
D. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] compressed vertically.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.