Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the maximum capacity of a cuboidal bathtub, we need to follow these steps:
1. Identify the given dimensions of the bathtub:
- Length = 160 cm
- Width = 40 cm
- Height = 50 cm
2. Calculate the volume of the bathtub in cubic centimeters (cm³):
The formula for the volume of a cuboid is:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given dimensions:
[tex]\[ \text{Volume} = 160 \, \text{cm} \times 40 \, \text{cm} \times 50 \, \text{cm} \][/tex]
3. Perform the multiplication:
[tex]\[ \text{Volume} = 160 \times 40 \times 50 \, \text{cm}^3 = 320,000 \, \text{cm}^3 \][/tex]
4. Convert the volume from cubic centimeters to liters:
We know that [tex]\( 1 \, \text{litre} = 1000 \, \text{cm}^3 \)[/tex].
Therefore, to convert the volume in cubic centimeters to liters, we divide by 1000:
[tex]\[ \text{Volume in litres} = \frac{\text{Volume in } \text{cm}^3}{1000} \][/tex]
Substituting the volume we calculated:
[tex]\[ \text{Volume in litres} = \frac{320,000 \, \text{cm}^3}{1000} = 320 \, \text{litres} \][/tex]
Thus, the maximum capacity of the bathtub is [tex]\( 320 \)[/tex] litres.
1. Identify the given dimensions of the bathtub:
- Length = 160 cm
- Width = 40 cm
- Height = 50 cm
2. Calculate the volume of the bathtub in cubic centimeters (cm³):
The formula for the volume of a cuboid is:
[tex]\[ \text{Volume} = \text{Length} \times \text{Width} \times \text{Height} \][/tex]
Substituting the given dimensions:
[tex]\[ \text{Volume} = 160 \, \text{cm} \times 40 \, \text{cm} \times 50 \, \text{cm} \][/tex]
3. Perform the multiplication:
[tex]\[ \text{Volume} = 160 \times 40 \times 50 \, \text{cm}^3 = 320,000 \, \text{cm}^3 \][/tex]
4. Convert the volume from cubic centimeters to liters:
We know that [tex]\( 1 \, \text{litre} = 1000 \, \text{cm}^3 \)[/tex].
Therefore, to convert the volume in cubic centimeters to liters, we divide by 1000:
[tex]\[ \text{Volume in litres} = \frac{\text{Volume in } \text{cm}^3}{1000} \][/tex]
Substituting the volume we calculated:
[tex]\[ \text{Volume in litres} = \frac{320,000 \, \text{cm}^3}{1000} = 320 \, \text{litres} \][/tex]
Thus, the maximum capacity of the bathtub is [tex]\( 320 \)[/tex] litres.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.