Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the system of inequalities:
[tex]\[ \begin{cases} x + 4y \geq 10 \\ 3x - 2y < 12 \end{cases} \][/tex]
we need to determine the region in the [tex]\(xy\)[/tex]-plane that satisfies both inequalities. We'll proceed step-by-step by analyzing each inequality and then finding the intersection of the regions they define.
### Analyzing the First Inequality: [tex]\(x + 4y \geq 10\)[/tex]
1. Rewrite in Slope-Intercept Form:
[tex]\[ x + 4y = 10 \quad \Rightarrow \quad 4y = -x + 10 \quad \Rightarrow \quad y = -\frac{1}{4}x + \frac{10}{4} \quad \Rightarrow \quad y = -\frac{1}{4}x + 2.5 \][/tex]
2. Graph the Equality:
- This line has a y-intercept of [tex]\(2.5\)[/tex] and a slope of [tex]\(-\frac{1}{4}\)[/tex].
- The line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] divides the plane.
3. Determine the Region:
- To figure out which side of the line is valid, pick a test point such as (0, 0).
- Substitute into the inequality: [tex]\(0 + 4(0) = 0\)[/tex], we see that [tex]\(0 \geq 10\)[/tex] is false.
- So, the region that satisfies [tex]\(x + 4y \geq 10\)[/tex] is the region above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex].
### Analyzing the Second Inequality: [tex]\(3x - 2y < 12\)[/tex]
1. Rewrite in Slope-Intercept Form:
[tex]\[ 3x - 2y = 12 \quad \Rightarrow \quad -2y = -3x + 12 \quad \Rightarrow \quad y = \frac{3}{2}x - 6 \][/tex]
2. Graph the Equality:
- This line has a y-intercept of [tex]\(-6\)[/tex] and a slope of [tex]\(\frac{3}{2}\)[/tex].
- The line [tex]\(y = \frac{3}{2}x - 6\)[/tex] divides the plane.
3. Determine the Region:
- To figure out which side of the line is valid, pick a test point such as [tex]\((0, 0)\)[/tex].
- Substitute into the inequality: [tex]\(3(0) - 2(0) = 0\)[/tex], we see that [tex]\(0 < 12\)[/tex] is true.
- So, the region that satisfies [tex]\(3x - 2y < 12\)[/tex] is the region below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex].
### Finding the Intersection of the Regions
We now seek the overlapping region that satisfies both inequalities:
1. Graphical Solution:
- Draw the lines [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] and [tex]\(y = \frac{3}{2}x - 6\)[/tex] on the same graph.
- Identify the region that is both above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] and below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex].
2. Points of Intersection:
- Find where the lines intersect by solving the system:
[tex]\[ -\frac{1}{4}x + 2.5 = \frac{3}{2}x - 6 \][/tex]
Multiply through by 4 to clear fractions:
[tex]\[ -x + 10 = 6x - 24 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 10 + 24 = 7x \quad \Rightarrow \quad 34 = 7x \quad \Rightarrow \quad x = \frac{34}{7} \approx 4.857 \][/tex]
Substitute [tex]\(x = \frac{34}{7}\)[/tex] back into either line equation to find [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{1}{4}\left(\frac{34}{7}\right) + 2.5 = \frac{-34}{28} + 2.5 = -\frac{17}{14} + 2.5 = -\frac{17}{14} + \frac{35}{14} = \frac{18}{14} = \frac{9}{7} \approx 1.286 \][/tex]
Therefore, the lines intersect at approximately [tex]\(\left(\frac{34}{7}, \frac{9}{7}\right)\)[/tex].
### Conclusion
The solution to the system of inequalities is the region in the [tex]\(xy\)[/tex]-plane that:
- Lies above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex]
- Lies below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex]
Graphing these regions and finding their overlap will visually provide the area satisfying both conditions.
[tex]\[ \begin{cases} x + 4y \geq 10 \\ 3x - 2y < 12 \end{cases} \][/tex]
we need to determine the region in the [tex]\(xy\)[/tex]-plane that satisfies both inequalities. We'll proceed step-by-step by analyzing each inequality and then finding the intersection of the regions they define.
### Analyzing the First Inequality: [tex]\(x + 4y \geq 10\)[/tex]
1. Rewrite in Slope-Intercept Form:
[tex]\[ x + 4y = 10 \quad \Rightarrow \quad 4y = -x + 10 \quad \Rightarrow \quad y = -\frac{1}{4}x + \frac{10}{4} \quad \Rightarrow \quad y = -\frac{1}{4}x + 2.5 \][/tex]
2. Graph the Equality:
- This line has a y-intercept of [tex]\(2.5\)[/tex] and a slope of [tex]\(-\frac{1}{4}\)[/tex].
- The line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] divides the plane.
3. Determine the Region:
- To figure out which side of the line is valid, pick a test point such as (0, 0).
- Substitute into the inequality: [tex]\(0 + 4(0) = 0\)[/tex], we see that [tex]\(0 \geq 10\)[/tex] is false.
- So, the region that satisfies [tex]\(x + 4y \geq 10\)[/tex] is the region above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex].
### Analyzing the Second Inequality: [tex]\(3x - 2y < 12\)[/tex]
1. Rewrite in Slope-Intercept Form:
[tex]\[ 3x - 2y = 12 \quad \Rightarrow \quad -2y = -3x + 12 \quad \Rightarrow \quad y = \frac{3}{2}x - 6 \][/tex]
2. Graph the Equality:
- This line has a y-intercept of [tex]\(-6\)[/tex] and a slope of [tex]\(\frac{3}{2}\)[/tex].
- The line [tex]\(y = \frac{3}{2}x - 6\)[/tex] divides the plane.
3. Determine the Region:
- To figure out which side of the line is valid, pick a test point such as [tex]\((0, 0)\)[/tex].
- Substitute into the inequality: [tex]\(3(0) - 2(0) = 0\)[/tex], we see that [tex]\(0 < 12\)[/tex] is true.
- So, the region that satisfies [tex]\(3x - 2y < 12\)[/tex] is the region below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex].
### Finding the Intersection of the Regions
We now seek the overlapping region that satisfies both inequalities:
1. Graphical Solution:
- Draw the lines [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] and [tex]\(y = \frac{3}{2}x - 6\)[/tex] on the same graph.
- Identify the region that is both above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex] and below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex].
2. Points of Intersection:
- Find where the lines intersect by solving the system:
[tex]\[ -\frac{1}{4}x + 2.5 = \frac{3}{2}x - 6 \][/tex]
Multiply through by 4 to clear fractions:
[tex]\[ -x + 10 = 6x - 24 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 10 + 24 = 7x \quad \Rightarrow \quad 34 = 7x \quad \Rightarrow \quad x = \frac{34}{7} \approx 4.857 \][/tex]
Substitute [tex]\(x = \frac{34}{7}\)[/tex] back into either line equation to find [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{1}{4}\left(\frac{34}{7}\right) + 2.5 = \frac{-34}{28} + 2.5 = -\frac{17}{14} + 2.5 = -\frac{17}{14} + \frac{35}{14} = \frac{18}{14} = \frac{9}{7} \approx 1.286 \][/tex]
Therefore, the lines intersect at approximately [tex]\(\left(\frac{34}{7}, \frac{9}{7}\right)\)[/tex].
### Conclusion
The solution to the system of inequalities is the region in the [tex]\(xy\)[/tex]-plane that:
- Lies above the line [tex]\(y = -\frac{1}{4}x + 2.5\)[/tex]
- Lies below the line [tex]\(y = \frac{3}{2}x - 6\)[/tex]
Graphing these regions and finding their overlap will visually provide the area satisfying both conditions.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.