Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine in which triangle the value of [tex]\( x \)[/tex] is equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex], we need to consider the definition and properties of the inverse tangent (arctangent) function.
The expression [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] represents an angle whose tangent (ratio of the opposite side to the adjacent side) is [tex]\(\frac{3.1}{5.2}\)[/tex].
Given that the arctangent function returns the angle [tex]\( x \)[/tex] for which [tex]\(\tan(x) = \frac{\text{opposite}}{\text{adjacent}}\)[/tex]:
1. Identify the triangle: We are looking for a right triangle where the lengths of the sides relative to the angle [tex]\( x \)[/tex] follow this ratio [tex]\( \frac{\text{opposite side}}{\text{adjacent side}} = \frac{3.1}{5.2} \)[/tex].
2. Opposite and Adjacent sides: In a right triangle, label the legs of the triangle such that one leg (opposite to angle [tex]\( x \)[/tex]) has length 3.1 units and the other leg (adjacent to angle [tex]\( x \)[/tex]) has length 5.2 units.
Thus, in the right triangle in question, for the angle [tex]\( x \)[/tex]:
- The side opposite the angle [tex]\( x \)[/tex] is 3.1 units.
- The side adjacent to the angle [tex]\( x \)[/tex] is 5.2 units.
The triangle in which the angle [tex]\( x \)[/tex] equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] must have these specific side lengths to satisfy the ratio [tex]\(\frac{3.1}{5.2}\)[/tex].
Therefore, the correct triangle is the one that has one leg of length 3.1 units and the other leg of length 5.2 units, forming a right angle between these two sides.
The expression [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] represents an angle whose tangent (ratio of the opposite side to the adjacent side) is [tex]\(\frac{3.1}{5.2}\)[/tex].
Given that the arctangent function returns the angle [tex]\( x \)[/tex] for which [tex]\(\tan(x) = \frac{\text{opposite}}{\text{adjacent}}\)[/tex]:
1. Identify the triangle: We are looking for a right triangle where the lengths of the sides relative to the angle [tex]\( x \)[/tex] follow this ratio [tex]\( \frac{\text{opposite side}}{\text{adjacent side}} = \frac{3.1}{5.2} \)[/tex].
2. Opposite and Adjacent sides: In a right triangle, label the legs of the triangle such that one leg (opposite to angle [tex]\( x \)[/tex]) has length 3.1 units and the other leg (adjacent to angle [tex]\( x \)[/tex]) has length 5.2 units.
Thus, in the right triangle in question, for the angle [tex]\( x \)[/tex]:
- The side opposite the angle [tex]\( x \)[/tex] is 3.1 units.
- The side adjacent to the angle [tex]\( x \)[/tex] is 5.2 units.
The triangle in which the angle [tex]\( x \)[/tex] equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] must have these specific side lengths to satisfy the ratio [tex]\(\frac{3.1}{5.2}\)[/tex].
Therefore, the correct triangle is the one that has one leg of length 3.1 units and the other leg of length 5.2 units, forming a right angle between these two sides.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.