Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

In which triangle is the value of [tex]$x$[/tex] equal to [tex]\tan^{-1}\left(\frac{3.1}{5.2}\right)[/tex]?

(Images may not be drawn to scale.)


Sagot :

To determine in which triangle the value of [tex]\( x \)[/tex] is equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex], we need to consider the definition and properties of the inverse tangent (arctangent) function.

The expression [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] represents an angle whose tangent (ratio of the opposite side to the adjacent side) is [tex]\(\frac{3.1}{5.2}\)[/tex].

Given that the arctangent function returns the angle [tex]\( x \)[/tex] for which [tex]\(\tan(x) = \frac{\text{opposite}}{\text{adjacent}}\)[/tex]:

1. Identify the triangle: We are looking for a right triangle where the lengths of the sides relative to the angle [tex]\( x \)[/tex] follow this ratio [tex]\( \frac{\text{opposite side}}{\text{adjacent side}} = \frac{3.1}{5.2} \)[/tex].

2. Opposite and Adjacent sides: In a right triangle, label the legs of the triangle such that one leg (opposite to angle [tex]\( x \)[/tex]) has length 3.1 units and the other leg (adjacent to angle [tex]\( x \)[/tex]) has length 5.2 units.

Thus, in the right triangle in question, for the angle [tex]\( x \)[/tex]:
- The side opposite the angle [tex]\( x \)[/tex] is 3.1 units.
- The side adjacent to the angle [tex]\( x \)[/tex] is 5.2 units.

The triangle in which the angle [tex]\( x \)[/tex] equal to [tex]\( \tan^{-1}\left(\frac{3.1}{5.2}\right) \)[/tex] must have these specific side lengths to satisfy the ratio [tex]\(\frac{3.1}{5.2}\)[/tex].

Therefore, the correct triangle is the one that has one leg of length 3.1 units and the other leg of length 5.2 units, forming a right angle between these two sides.