Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the inverse function of [tex]\( g(x) = \frac{x-2}{5} \)[/tex], let's work through the steps systematically.
1. Write the function [tex]\( g(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - 2}{5} \][/tex]
2. To find the inverse function, swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{y - 2}{5} \][/tex]
3. Solve the equation for [tex]\( y \)[/tex]:
- First, eliminate the fraction by multiplying both sides by 5:
[tex]\[ 5x = y - 2 \][/tex]
- Then, isolate [tex]\( y \)[/tex] by adding 2 to both sides of the equation:
[tex]\[ 5x + 2 = y \][/tex]
- Therefore, the inverse function is:
[tex]\[ y = 5x + 2 \][/tex]
So, the inverse of [tex]\( g(x) = \frac{x - 2}{5} \)[/tex] is [tex]\( g^{-1}(x) = 5x + 2 \)[/tex].
Now, considering the function [tex]\( f(x) = 5x + 2 \)[/tex], we observe that:
- [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverse functions of each other. This means that if you compose [tex]\( f \)[/tex] and [tex]\( g \)[/tex] (either [tex]\( f(g(x)) \)[/tex] or [tex]\( g(f(x)) \)[/tex]), you should get back [tex]\( x \)[/tex].
To verify:
- [tex]\( f(g(x)) = f\left(\frac{x-2}{5}\right) \)[/tex]:
[tex]\[ f\left(\frac{x-2}{5}\right) = 5 \left(\frac{x-2}{5}\right) + 2 = x - 2 + 2 = x \][/tex]
- [tex]\( g(f(x)) = g(5x + 2) \)[/tex]:
[tex]\[ g(5x + 2) = \frac{(5x + 2) - 2}{5} = \frac{5x}{5} = x \][/tex]
This confirms that:
[tex]\[ f(x) = 5x + 2 \quad \text{and} \quad g(x) = \frac{x-2}{5} \][/tex]
are indeed inverse functions of each other, ensuring that they have a unique and symmetric relationship as functions that essentially "undo" each other.
1. Write the function [tex]\( g(x) \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - 2}{5} \][/tex]
2. To find the inverse function, swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{y - 2}{5} \][/tex]
3. Solve the equation for [tex]\( y \)[/tex]:
- First, eliminate the fraction by multiplying both sides by 5:
[tex]\[ 5x = y - 2 \][/tex]
- Then, isolate [tex]\( y \)[/tex] by adding 2 to both sides of the equation:
[tex]\[ 5x + 2 = y \][/tex]
- Therefore, the inverse function is:
[tex]\[ y = 5x + 2 \][/tex]
So, the inverse of [tex]\( g(x) = \frac{x - 2}{5} \)[/tex] is [tex]\( g^{-1}(x) = 5x + 2 \)[/tex].
Now, considering the function [tex]\( f(x) = 5x + 2 \)[/tex], we observe that:
- [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are inverse functions of each other. This means that if you compose [tex]\( f \)[/tex] and [tex]\( g \)[/tex] (either [tex]\( f(g(x)) \)[/tex] or [tex]\( g(f(x)) \)[/tex]), you should get back [tex]\( x \)[/tex].
To verify:
- [tex]\( f(g(x)) = f\left(\frac{x-2}{5}\right) \)[/tex]:
[tex]\[ f\left(\frac{x-2}{5}\right) = 5 \left(\frac{x-2}{5}\right) + 2 = x - 2 + 2 = x \][/tex]
- [tex]\( g(f(x)) = g(5x + 2) \)[/tex]:
[tex]\[ g(5x + 2) = \frac{(5x + 2) - 2}{5} = \frac{5x}{5} = x \][/tex]
This confirms that:
[tex]\[ f(x) = 5x + 2 \quad \text{and} \quad g(x) = \frac{x-2}{5} \][/tex]
are indeed inverse functions of each other, ensuring that they have a unique and symmetric relationship as functions that essentially "undo" each other.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.