Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the remainder when dividing [tex]\( 5x^3 + 7x + 5 \)[/tex] by [tex]\( x + 2 \)[/tex], we will perform polynomial division, a method similar to long division for numbers. Here is a step-by-step solution:
### Step-by-Step Solution
1. Set Up the Polynomial Division:
The dividend (the polynomial we are dividing) is [tex]\( 5x^3 + 7x + 5 \)[/tex].
The divisor (the polynomial we are dividing by) is [tex]\( x + 2 \)[/tex].
2. Perform the Division:
Step 1: Divide the leading term of the dividend by the leading term of the divisor.
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
So, the first term of the quotient is [tex]\( 5x^2 \)[/tex].
Step 2: Multiply the entire divisor [tex]\( x + 2 \)[/tex] by this term [tex]\( 5x^2 \)[/tex]:
[tex]\[ (x + 2) \cdot 5x^2 = 5x^3 + 10x^2 \][/tex]
Step 3: Subtract this result from the original dividend:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
Step 4: Repeat the process with the new polynomial [tex]\(-10x^2 + 7x + 5\)[/tex].
Divide the leading term of the new dividend by the leading term of the divisor:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
So, the next term of the quotient is [tex]\(-10x\)[/tex].
Step 5: Multiply the divisor by this new term [tex]\(-10x\)[/tex]:
[tex]\[ (x + 2) \cdot (-10x) = -10x^2 - 20x \][/tex]
Step 6: Subtract this result from the new dividend:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
Step 7: Repeat the process with the new polynomial [tex]\(27x + 5\)[/tex].
Divide the leading term of the new dividend by the leading term of the divisor:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
So, the next term of the quotient is [tex]\(27\)[/tex].
Step 8: Multiply the divisor by this new term [tex]\(27\)[/tex]:
[tex]\[ (x + 2) \cdot 27 = 27x + 54 \][/tex]
Step 9: Subtract this result from the new dividend:
[tex]\[ (27x + 5) - (27x + 54) = 5 - 54 = -49 \][/tex]
3. Result:
At this point, no further division is possible because the degree of the new polynomial is less than the degree of the divisor [tex]\( x + 2 \)[/tex]. Thus, the remainder is:
[tex]\[ -49 \][/tex]
### Final Answer
The remainder of the division of [tex]\( \frac{5x^3 + 7x + 5}{x + 2} \)[/tex] is [tex]\( -49 \)[/tex].
### Step-by-Step Solution
1. Set Up the Polynomial Division:
The dividend (the polynomial we are dividing) is [tex]\( 5x^3 + 7x + 5 \)[/tex].
The divisor (the polynomial we are dividing by) is [tex]\( x + 2 \)[/tex].
2. Perform the Division:
Step 1: Divide the leading term of the dividend by the leading term of the divisor.
[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]
So, the first term of the quotient is [tex]\( 5x^2 \)[/tex].
Step 2: Multiply the entire divisor [tex]\( x + 2 \)[/tex] by this term [tex]\( 5x^2 \)[/tex]:
[tex]\[ (x + 2) \cdot 5x^2 = 5x^3 + 10x^2 \][/tex]
Step 3: Subtract this result from the original dividend:
[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = -10x^2 + 7x + 5 \][/tex]
Step 4: Repeat the process with the new polynomial [tex]\(-10x^2 + 7x + 5\)[/tex].
Divide the leading term of the new dividend by the leading term of the divisor:
[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]
So, the next term of the quotient is [tex]\(-10x\)[/tex].
Step 5: Multiply the divisor by this new term [tex]\(-10x\)[/tex]:
[tex]\[ (x + 2) \cdot (-10x) = -10x^2 - 20x \][/tex]
Step 6: Subtract this result from the new dividend:
[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 27x + 5 \][/tex]
Step 7: Repeat the process with the new polynomial [tex]\(27x + 5\)[/tex].
Divide the leading term of the new dividend by the leading term of the divisor:
[tex]\[ \frac{27x}{x} = 27 \][/tex]
So, the next term of the quotient is [tex]\(27\)[/tex].
Step 8: Multiply the divisor by this new term [tex]\(27\)[/tex]:
[tex]\[ (x + 2) \cdot 27 = 27x + 54 \][/tex]
Step 9: Subtract this result from the new dividend:
[tex]\[ (27x + 5) - (27x + 54) = 5 - 54 = -49 \][/tex]
3. Result:
At this point, no further division is possible because the degree of the new polynomial is less than the degree of the divisor [tex]\( x + 2 \)[/tex]. Thus, the remainder is:
[tex]\[ -49 \][/tex]
### Final Answer
The remainder of the division of [tex]\( \frac{5x^3 + 7x + 5}{x + 2} \)[/tex] is [tex]\( -49 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.