Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the equation(s) of the tangent line(s) to the graph of the curve [tex]\( y = x^3 - 12x \)[/tex] passing through the point [tex]\( (1, -12) \)[/tex], we follow these steps:
1. Identify the curve and the given point:
- Curve: [tex]\( y = x^3 - 12x \)[/tex]
- Point: [tex]\( (1, -12) \)[/tex]
2. Differentiate the curve to find the slope of the tangent line:
- The derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \frac{dy}{dx} \)[/tex].
- [tex]\( y = x^3 - 12x \)[/tex]
- Differentiating: [tex]\( \frac{dy}{dx} = 3x^2 - 12 \)[/tex]
3. Evaluate the derivative at the point of tangency to find the slope:
- Substitute [tex]\( x = 1 \)[/tex] into [tex]\( \frac{dy}{dx} \)[/tex]:
- [tex]\( \frac{dy}{dx} = 3(1)^2 - 12 = 3 - 12 = -9 \)[/tex]
4. Use the point-slope form of a line to find the equation of the tangent line:
- The point-slope form is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point.
- Here, [tex]\( m = -9 \)[/tex] and the point is [tex]\( (1, -12) \)[/tex].
- Substituting these values:
[tex]\[ y - (-12) = -9(x - 1) \][/tex]
Simplifying the equation:
[tex]\[ y + 12 = -9x + 9 \][/tex]
[tex]\[ y = -9x + 9 - 12 \][/tex]
[tex]\[ y = -9x - 3 \][/tex]
Therefore, the equation of the tangent line to the graph of the curve [tex]\( y = x^3 - 12x \)[/tex] that passes through the point [tex]\( (1, -12) \)[/tex] is:
[tex]\[ y = -9x - 3 \][/tex]
1. Identify the curve and the given point:
- Curve: [tex]\( y = x^3 - 12x \)[/tex]
- Point: [tex]\( (1, -12) \)[/tex]
2. Differentiate the curve to find the slope of the tangent line:
- The derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \frac{dy}{dx} \)[/tex].
- [tex]\( y = x^3 - 12x \)[/tex]
- Differentiating: [tex]\( \frac{dy}{dx} = 3x^2 - 12 \)[/tex]
3. Evaluate the derivative at the point of tangency to find the slope:
- Substitute [tex]\( x = 1 \)[/tex] into [tex]\( \frac{dy}{dx} \)[/tex]:
- [tex]\( \frac{dy}{dx} = 3(1)^2 - 12 = 3 - 12 = -9 \)[/tex]
4. Use the point-slope form of a line to find the equation of the tangent line:
- The point-slope form is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope, and [tex]\( (x_1, y_1) \)[/tex] is the point.
- Here, [tex]\( m = -9 \)[/tex] and the point is [tex]\( (1, -12) \)[/tex].
- Substituting these values:
[tex]\[ y - (-12) = -9(x - 1) \][/tex]
Simplifying the equation:
[tex]\[ y + 12 = -9x + 9 \][/tex]
[tex]\[ y = -9x + 9 - 12 \][/tex]
[tex]\[ y = -9x - 3 \][/tex]
Therefore, the equation of the tangent line to the graph of the curve [tex]\( y = x^3 - 12x \)[/tex] that passes through the point [tex]\( (1, -12) \)[/tex] is:
[tex]\[ y = -9x - 3 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.