Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve for [tex]\( x \)[/tex].

[tex]\[ x^2 + 2x + 1 = 0 \][/tex]


Sagot :

To solve the quadratic equation [tex]\(x^2 + 2x + 1 = 0\)[/tex], we can use the quadratic formula which states that for any quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], the solutions for [tex]\(x\)[/tex] are given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Step-by-step, we apply this formula to our specific equation [tex]\(x^2 + 2x + 1 = 0\)[/tex], where [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = 1\)[/tex].

1. Calculate the discriminant:
The discriminant ([tex]\(\Delta\)[/tex]) is given by [tex]\(b^2 - 4ac\)[/tex]. Substituting the values, we get:
[tex]\[ \Delta = 2^2 - 4(1)(1) \][/tex]
[tex]\[ \Delta = 4 - 4 \][/tex]
[tex]\[ \Delta = 0 \][/tex]

The discriminant is 0, which indicates that the quadratic equation has one real repeated root.

2. Calculate the solutions:
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{\Delta}}{2a} \)[/tex], we substitute the values [tex]\(a = 1\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(\Delta = 0\)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{0}}{2 \times 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-2 \pm 0}{2} \][/tex]
[tex]\[ x = \frac{-2}{2} \][/tex]
[tex]\[ x = -1 \][/tex]

Since the discriminant is 0, the two solutions are not distinct and both are [tex]\(x = -1\)[/tex].

Therefore, the quadratic equation [tex]\(x^2 + 2x + 1 = 0\)[/tex] has a discriminant of 0, and the single (repeated) solution is:

[tex]\[ x = -1 \][/tex]

Thus, the roots of the equation are:
[tex]\[ x_1 = -1 \quad \text{and} \quad x_2 = -1 \][/tex]