Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's derive the relationship between the initial population [tex]\( P \)[/tex], the population after [tex]\( T \)[/tex] years [tex]\( P_T \)[/tex], the number of years [tex]\( T \)[/tex], and the growth rate [tex]\( R \% \)[/tex].
To solve this, we can refer to the formula for compound interest, which is generally used to model population growth. The compound interest formula can be adapted to calculate the population growth over time.
1. Identifying the Variables:
- [tex]\( P \)[/tex]: Initial population
- [tex]\( P_T \)[/tex]: Population after [tex]\( T \)[/tex] years
- [tex]\( T \)[/tex]: Number of years
- [tex]\( R \)[/tex]: Growth rate (expressed as a percentage)
2. Formula Setup:
The compound interest formula that fits this scenario is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
Here, [tex]\( \left(1 + \frac{R}{100}\right)^T \)[/tex] represents the growth factor after [tex]\( T \)[/tex] years, where the rate [tex]\( R \% \)[/tex] is compounded annually.
3. Step-by-Step Derivation:
- In year 1, the population becomes:
[tex]\[ P_1 = P \times \left(1 + \frac{R}{100}\right) \][/tex]
- In year 2, the population becomes:
[tex]\[ P_2 = P_1 \times \left(1 + \frac{R}{100}\right) = P \times \left(1 + \frac{R}{100}\right) \times \left(1 + \frac{R}{100}\right) = P \times \left(1 + \frac{R}{100}\right)^2 \][/tex]
- This pattern continues, and after [tex]\( T \)[/tex] years, the population is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
4. Conclusion:
The relation between the initial population [tex]\( P \)[/tex], the population after [tex]\( T \)[/tex] years [tex]\( P_T \)[/tex], and the growth rate [tex]\( R \% \)[/tex] over [tex]\( T \)[/tex] years is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
Therefore, the equation that represents the relationship is:
[tex]\[ \boxed{P_T = P \left(\frac{R}{100} + 1\right)^T} \][/tex]
To solve this, we can refer to the formula for compound interest, which is generally used to model population growth. The compound interest formula can be adapted to calculate the population growth over time.
1. Identifying the Variables:
- [tex]\( P \)[/tex]: Initial population
- [tex]\( P_T \)[/tex]: Population after [tex]\( T \)[/tex] years
- [tex]\( T \)[/tex]: Number of years
- [tex]\( R \)[/tex]: Growth rate (expressed as a percentage)
2. Formula Setup:
The compound interest formula that fits this scenario is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
Here, [tex]\( \left(1 + \frac{R}{100}\right)^T \)[/tex] represents the growth factor after [tex]\( T \)[/tex] years, where the rate [tex]\( R \% \)[/tex] is compounded annually.
3. Step-by-Step Derivation:
- In year 1, the population becomes:
[tex]\[ P_1 = P \times \left(1 + \frac{R}{100}\right) \][/tex]
- In year 2, the population becomes:
[tex]\[ P_2 = P_1 \times \left(1 + \frac{R}{100}\right) = P \times \left(1 + \frac{R}{100}\right) \times \left(1 + \frac{R}{100}\right) = P \times \left(1 + \frac{R}{100}\right)^2 \][/tex]
- This pattern continues, and after [tex]\( T \)[/tex] years, the population is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
4. Conclusion:
The relation between the initial population [tex]\( P \)[/tex], the population after [tex]\( T \)[/tex] years [tex]\( P_T \)[/tex], and the growth rate [tex]\( R \% \)[/tex] over [tex]\( T \)[/tex] years is:
[tex]\[ P_T = P \times \left(1 + \frac{R}{100}\right)^T \][/tex]
Therefore, the equation that represents the relationship is:
[tex]\[ \boxed{P_T = P \left(\frac{R}{100} + 1\right)^T} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.