Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the quadratic polynomials and verify the relationships between the zeroes and their coefficients, follow these steps:
### Part (i): [tex]\( 8t^2 + 2t - 15 \)[/tex]
1. Finding the Zeroes:
The quadratic equation is given by [tex]\( 8t^2 + 2t - 15 = 0 \)[/tex]. Solving this equation for [tex]\( t \)[/tex], we find the zeroes to be:
[tex]\[ t_1 = -\frac{3}{2}, \quad t_2 = \frac{5}{4} \][/tex]
2. Sum and Product of the Zeroes:
- Sum of the Zeroes:
[tex]\[ t_1 + t_2 = -\frac{3}{2} + \frac{5}{4} = -\frac{6}{4} + \frac{5}{4} = -\frac{1}{4} \][/tex]
- Product of the Zeroes:
[tex]\[ t_1 \cdot t_2 = \left(-\frac{3}{2}\right) \cdot \left(\frac{5}{4}\right) = -\frac{15}{8} \][/tex]
3. Verification with Coefficients:
For a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], the sum of the zeroes is given by [tex]\(-\frac{b}{a}\)[/tex] and the product is given by [tex]\(\frac{c}{a}\)[/tex].
- Sum Relation:
[tex]\[ -\frac{b}{a} = -\frac{2}{8} = -\frac{1}{4} \][/tex]
We see that [tex]\(-\frac{1}{4}\)[/tex] matches the calculated sum.
- Product Relation:
[tex]\[ \frac{c}{a} = \frac{-15}{8} = -\frac{15}{8} \][/tex]
We see that [tex]\(-\frac{15}{8}\)[/tex] matches the calculated product.
### Part (ii): [tex]\( 4\sqrt{3} x^2 + 5x - 2 \sqrt{3} \)[/tex]
1. Finding the Zeroes:
The quadratic equation is given by [tex]\( 4\sqrt{3} x^2 + 5x - 2 \sqrt{3} = 0 \)[/tex]. Solving this equation for [tex]\( x \)[/tex], we find the zeroes to be:
[tex]\[ x_1 = -\frac{2\sqrt{3}}{3}, \quad x_2 = \frac{\sqrt{3}}{4} \][/tex]
2. Sum and Product of the Zeroes:
- Sum of the Zeroes:
[tex]\[ x_1 + x_2 = -\frac{2\sqrt{3}}{3} + \frac{\sqrt{3}}{4} = -\frac{8\sqrt{3}}{12} + \frac{3\sqrt{3}}{12} = -\frac{5\sqrt{3}}{12} \][/tex]
- Product of the Zeroes:
[tex]\[ x_1 \cdot x_2 = \left(-\frac{2\sqrt{3}}{3}\right) \cdot \left(\frac{\sqrt{3}}{4}\right) = -\frac{2 \cdot 3}{12} = -\frac{1}{2} \][/tex]
3. Verification with Coefficients:
For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], the sum of the zeroes is given by [tex]\(-\frac{b}{a}\)[/tex] and the product is given by [tex]\(\frac{c}{a}\)[/tex].
- Sum Relation:
[tex]\[ -\frac{b}{a} = -\frac{5}{4\sqrt{3}} = -\frac{5}{4} \cdot \frac{1}{\sqrt{3}} = -\frac{5\sqrt{3}}{12} \][/tex]
We see that [tex]\(-\frac{5\sqrt{3}}{12}\)[/tex] matches the calculated sum.
- Product Relation:
[tex]\[ \frac{c}{a} = \frac{-2\sqrt{3}}{4\sqrt{3}} = -\frac{2\sqrt{3}}{4\sqrt{3}} = -\frac{2}{4} = -\frac{1}{2} \][/tex]
We see that [tex]\(-\frac{1}{2}\)[/tex] matches the calculated product.
Thus, we have found the zeroes of both quadratic polynomials and verified the relations between their zeroes and coefficients.
### Part (i): [tex]\( 8t^2 + 2t - 15 \)[/tex]
1. Finding the Zeroes:
The quadratic equation is given by [tex]\( 8t^2 + 2t - 15 = 0 \)[/tex]. Solving this equation for [tex]\( t \)[/tex], we find the zeroes to be:
[tex]\[ t_1 = -\frac{3}{2}, \quad t_2 = \frac{5}{4} \][/tex]
2. Sum and Product of the Zeroes:
- Sum of the Zeroes:
[tex]\[ t_1 + t_2 = -\frac{3}{2} + \frac{5}{4} = -\frac{6}{4} + \frac{5}{4} = -\frac{1}{4} \][/tex]
- Product of the Zeroes:
[tex]\[ t_1 \cdot t_2 = \left(-\frac{3}{2}\right) \cdot \left(\frac{5}{4}\right) = -\frac{15}{8} \][/tex]
3. Verification with Coefficients:
For a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex], the sum of the zeroes is given by [tex]\(-\frac{b}{a}\)[/tex] and the product is given by [tex]\(\frac{c}{a}\)[/tex].
- Sum Relation:
[tex]\[ -\frac{b}{a} = -\frac{2}{8} = -\frac{1}{4} \][/tex]
We see that [tex]\(-\frac{1}{4}\)[/tex] matches the calculated sum.
- Product Relation:
[tex]\[ \frac{c}{a} = \frac{-15}{8} = -\frac{15}{8} \][/tex]
We see that [tex]\(-\frac{15}{8}\)[/tex] matches the calculated product.
### Part (ii): [tex]\( 4\sqrt{3} x^2 + 5x - 2 \sqrt{3} \)[/tex]
1. Finding the Zeroes:
The quadratic equation is given by [tex]\( 4\sqrt{3} x^2 + 5x - 2 \sqrt{3} = 0 \)[/tex]. Solving this equation for [tex]\( x \)[/tex], we find the zeroes to be:
[tex]\[ x_1 = -\frac{2\sqrt{3}}{3}, \quad x_2 = \frac{\sqrt{3}}{4} \][/tex]
2. Sum and Product of the Zeroes:
- Sum of the Zeroes:
[tex]\[ x_1 + x_2 = -\frac{2\sqrt{3}}{3} + \frac{\sqrt{3}}{4} = -\frac{8\sqrt{3}}{12} + \frac{3\sqrt{3}}{12} = -\frac{5\sqrt{3}}{12} \][/tex]
- Product of the Zeroes:
[tex]\[ x_1 \cdot x_2 = \left(-\frac{2\sqrt{3}}{3}\right) \cdot \left(\frac{\sqrt{3}}{4}\right) = -\frac{2 \cdot 3}{12} = -\frac{1}{2} \][/tex]
3. Verification with Coefficients:
For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], the sum of the zeroes is given by [tex]\(-\frac{b}{a}\)[/tex] and the product is given by [tex]\(\frac{c}{a}\)[/tex].
- Sum Relation:
[tex]\[ -\frac{b}{a} = -\frac{5}{4\sqrt{3}} = -\frac{5}{4} \cdot \frac{1}{\sqrt{3}} = -\frac{5\sqrt{3}}{12} \][/tex]
We see that [tex]\(-\frac{5\sqrt{3}}{12}\)[/tex] matches the calculated sum.
- Product Relation:
[tex]\[ \frac{c}{a} = \frac{-2\sqrt{3}}{4\sqrt{3}} = -\frac{2\sqrt{3}}{4\sqrt{3}} = -\frac{2}{4} = -\frac{1}{2} \][/tex]
We see that [tex]\(-\frac{1}{2}\)[/tex] matches the calculated product.
Thus, we have found the zeroes of both quadratic polynomials and verified the relations between their zeroes and coefficients.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.