At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

If [tex]$A=\left[\begin{array}{rrr}1 & 5 & 3 \\ 2 & 4 & 0 \\ 3 & -1 & -5\end{array}\right]$[/tex] and [tex][tex]$B=\left[\begin{array}{rrr}2 & -1 & 0 \\ 0 & -2 & 5 \\ 1 & 2 & 0\end{array}\right]$[/tex][/tex], then find [tex]$3A - 4B^{\prime}$[/tex].

Sagot :

To solve the problem of finding [tex]\(3A - 4B^{\prime}\)[/tex], we need to follow these steps:

1. Compute [tex]\(3A\)[/tex]: This involves multiplying each element of matrix [tex]\(A\)[/tex] by 3.

2. Compute [tex]\(B^{\prime}\)[/tex]: This is the transpose of matrix [tex]\(B\)[/tex], where we switch the rows and columns of [tex]\(B\)[/tex].

3. Compute [tex]\(4B^{\prime}\)[/tex]: This involves multiplying each element of the transposed matrix [tex]\(B^{\prime}\)[/tex] by 4.

4. Compute [tex]\(3A - 4B^{\prime}\)[/tex]: This is done by subtracting the corresponding elements of [tex]\(4B^{\prime}\)[/tex] from [tex]\(3A\)[/tex].

Let's go through each of these steps in detail:

### Step 1: Compute [tex]\(3A\)[/tex]
Matrix [tex]\(A\)[/tex] is:
[tex]\[ A = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 4 & 0 \\ 3 & -1 & -5 \end{pmatrix} \][/tex]

Multiplying each element of [tex]\(A\)[/tex] by 3 gives:
[tex]\[ 3A = 3 \times \begin{pmatrix} 1 & 5 & 3 \\ 2 & 4 & 0 \\ 3 & -1 & -5 \end{pmatrix} = \begin{pmatrix} 3 & 15 & 9 \\ 6 & 12 & 0 \\ 9 & -3 & -15 \end{pmatrix} \][/tex]

### Step 2: Compute the transpose of [tex]\(B\)[/tex]
Matrix [tex]\(B\)[/tex] is:
[tex]\[ B = \begin{pmatrix} 2 & -1 & 0 \\ 0 & -2 & 5 \\ 1 & 2 & 0 \end{pmatrix} \][/tex]

The transpose of [tex]\(B\)[/tex], denoted as [tex]\(B^{\prime}\)[/tex], is:
[tex]\[ B^{\prime} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & -2 & 2 \\ 0 & 5 & 0 \end{pmatrix} \][/tex]

### Step 3: Compute [tex]\(4B^{\prime}\)[/tex]
Multiplying each element of [tex]\(B^{\prime}\)[/tex] by 4 gives:
[tex]\[ 4B^{\prime} = 4 \times \begin{pmatrix} 2 & 0 & 1 \\ -1 & -2 & 2 \\ 0 & 5 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 0 & 4 \\ -4 & -8 & 8 \\ 0 & 20 & 0 \end{pmatrix} \][/tex]

### Step 4: Compute [tex]\(3A - 4B^{\prime}\)[/tex]
Subtracting the corresponding elements of [tex]\(4B^{\prime}\)[/tex] from [tex]\(3A\)[/tex] gives:
[tex]\[ 3A - 4B^{\prime} = \begin{pmatrix} 3 & 15 & 9 \\ 6 & 12 & 0 \\ 9 & -3 & -15 \end{pmatrix} - \begin{pmatrix} 8 & 0 & 4 \\ -4 & -8 & 8 \\ 0 & 20 & 0 \end{pmatrix} = \begin{pmatrix} 3 - 8 & 15 - 0 & 9 - 4 \\ 6 - (-4) & 12 - (-8) & 0 - 8 \\ 9 - 0 & -3 - 20 & -15 - 0 \end{pmatrix} \][/tex]

Simplifying this, we get:
[tex]\[ 3A - 4B^{\prime} = \begin{pmatrix} -5 & 15 & 5 \\ 10 & 20 & -8 \\ 9 & -23 & -15 \end{pmatrix} \][/tex]

Hence, the final result is:
[tex]\[ 3A - 4B^{\prime} = \begin{pmatrix} -5 & 15 & 5 \\ 10 & 20 & -8 \\ 9 & -23 & -15 \end{pmatrix} \][/tex]