Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's prove that the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] has roots given by [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
To do this, we will derive the quadratic formula step-by-step.
### Step 1: Write the General Form
Consider the quadratic equation:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
### Step 2: Normalize the Equation
If [tex]\( a \neq 0 \)[/tex], we can divide the entire equation by [tex]\( a \)[/tex] to simplify:
[tex]\[ x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \][/tex]
### Step 3: Complete the Square
To complete the square, we need to make the left side of the equation a perfect square trinomial. Let's isolate the constant term:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
Next, add and subtract [tex]\((\frac{b}{2a})^2\)[/tex] on the left-hand side:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
This simplifies to:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
### Step 4: Simplify the Equation
Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \][/tex]
Now, get a common denominator on the right-hand side and simplify:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Take the square root of both sides:
[tex]\[ x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting [tex]\(\frac{b}{2a}\)[/tex] from both sides:
[tex]\[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 6: Combine the Terms
Combine the terms on the right-hand side under a common denominator:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Thus, we have derived that the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Conclusion:
If [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = 2 \)[/tex], then substituting these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = \frac{3 + 1}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = 1 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] here is [tex]\( b^2 - 4ac = 1 \)[/tex], confirming that the roots indeed are [tex]\( 2.0 \)[/tex] and [tex]\( 1.0 \)[/tex].
To do this, we will derive the quadratic formula step-by-step.
### Step 1: Write the General Form
Consider the quadratic equation:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
### Step 2: Normalize the Equation
If [tex]\( a \neq 0 \)[/tex], we can divide the entire equation by [tex]\( a \)[/tex] to simplify:
[tex]\[ x^2 + \frac{b}{a} x + \frac{c}{a} = 0 \][/tex]
### Step 3: Complete the Square
To complete the square, we need to make the left side of the equation a perfect square trinomial. Let's isolate the constant term:
[tex]\[ x^2 + \frac{b}{a} x = -\frac{c}{a} \][/tex]
Next, add and subtract [tex]\((\frac{b}{2a})^2\)[/tex] on the left-hand side:
[tex]\[ x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
This simplifies to:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} \][/tex]
### Step 4: Simplify the Equation
Combine the terms involving [tex]\( x \)[/tex]:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \][/tex]
Now, get a common denominator on the right-hand side and simplify:
[tex]\[ \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]
### Step 5: Solve for [tex]\( x \)[/tex]
Take the square root of both sides:
[tex]\[ x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
Isolate [tex]\( x \)[/tex] by subtracting [tex]\(\frac{b}{2a}\)[/tex] from both sides:
[tex]\[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \][/tex]
### Step 6: Combine the Terms
Combine the terms on the right-hand side under a common denominator:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Thus, we have derived that the roots of the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
### Conclusion:
If [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], and [tex]\( c = 2 \)[/tex], then substituting these values into the quadratic formula gives:
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(2)}}{2(1)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 - 8}}{2} \][/tex]
[tex]\[ x = \frac{3 \pm 1}{2} \][/tex]
Thus, the roots are:
[tex]\[ x_1 = \frac{3 + 1}{2} = 2 \][/tex]
[tex]\[ x_2 = \frac{3 - 1}{2} = 1 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] here is [tex]\( b^2 - 4ac = 1 \)[/tex], confirming that the roots indeed are [tex]\( 2.0 \)[/tex] and [tex]\( 1.0 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.