Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the function [tex]\( f(x) \)[/tex] given its derivative [tex]\( f'(x) = 3x^2 + 2x \)[/tex], we need to integrate the given derivative. Here's the step-by-step process:
1. Set up the integral: We need to find the antiderivative (indefinite integral) of [tex]\( f'(x) \)[/tex].
[tex]\[ f(x) = \int (3x^2 + 2x) \, dx \][/tex]
2. Integrate each term separately: We break down the integral into parts and integrate each term individually.
[tex]\[ \int 3x^2 \, dx + \int 2x \, dx \][/tex]
3. Integrate [tex]\( 3x^2 \)[/tex]: Using the power rule for integration, [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\( C \)[/tex] is the constant of integration, we get:
[tex]\[ \int 3x^2 \, dx = 3 \left(\frac{x^{2+1}}{2+1}\right) = 3 \left(\frac{x^3}{3}\right) = x^3 \][/tex]
4. Integrate [tex]\( 2x \)[/tex]: Similarly, applying the power rule for the term [tex]\( 2x \)[/tex]:
[tex]\[ \int 2x \, dx = 2 \left(\frac{x^{1+1}}{1+1}\right) = 2 \left(\frac{x^2}{2}\right) = x^2 \][/tex]
5. Combine the integrated terms: Summing the results of the integrals, we get:
[tex]\[ f(x) = x^3 + x^2 + C \][/tex]
Here, [tex]\( C \)[/tex] is the constant of integration.
Therefore, the resulting function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = x^3 + x^2 + C \][/tex]
In this context, without additional initial conditions or boundary conditions to determine the specific value of [tex]\( C \)[/tex], the general solution to the integrated function is:
[tex]\[ f(x) = x^3 + x^2 \][/tex]
1. Set up the integral: We need to find the antiderivative (indefinite integral) of [tex]\( f'(x) \)[/tex].
[tex]\[ f(x) = \int (3x^2 + 2x) \, dx \][/tex]
2. Integrate each term separately: We break down the integral into parts and integrate each term individually.
[tex]\[ \int 3x^2 \, dx + \int 2x \, dx \][/tex]
3. Integrate [tex]\( 3x^2 \)[/tex]: Using the power rule for integration, [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\( C \)[/tex] is the constant of integration, we get:
[tex]\[ \int 3x^2 \, dx = 3 \left(\frac{x^{2+1}}{2+1}\right) = 3 \left(\frac{x^3}{3}\right) = x^3 \][/tex]
4. Integrate [tex]\( 2x \)[/tex]: Similarly, applying the power rule for the term [tex]\( 2x \)[/tex]:
[tex]\[ \int 2x \, dx = 2 \left(\frac{x^{1+1}}{1+1}\right) = 2 \left(\frac{x^2}{2}\right) = x^2 \][/tex]
5. Combine the integrated terms: Summing the results of the integrals, we get:
[tex]\[ f(x) = x^3 + x^2 + C \][/tex]
Here, [tex]\( C \)[/tex] is the constant of integration.
Therefore, the resulting function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = x^3 + x^2 + C \][/tex]
In this context, without additional initial conditions or boundary conditions to determine the specific value of [tex]\( C \)[/tex], the general solution to the integrated function is:
[tex]\[ f(x) = x^3 + x^2 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.