Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the ratio of juniors to adults, we need to combine the given ratios in step-by-step fashion.
1. Express the given ratios:
- The ratio of juniors to children is [tex]\( 2:3 \)[/tex]. This means for every 2 juniors, there are 3 children.
- The ratio of children to adults is [tex]\( 5:3 \)[/tex]. This means for every 5 children, there are 3 adults.
2. Establish the relationships:
- If we let the number of children be [tex]\( C \)[/tex], then the number of juniors [tex]\( J \)[/tex] can be expressed as:
[tex]\[ J = \frac{2}{3}C \][/tex]
- The number of adults [tex]\( A \)[/tex] can be expressed using the ratio of children to adults:
[tex]\[ A = \frac{3}{5}C \][/tex]
3. Combine the relationships:
- We need the ratio of juniors to adults [tex]\( \frac{J}{A} \)[/tex].
- Substitute the expressions for [tex]\( J \)[/tex] and [tex]\( A \)[/tex] in terms of [tex]\( C \)[/tex]:
[tex]\[ \frac{J}{A} = \frac{\frac{2}{3}C}{\frac{3}{5}C} \][/tex]
4. Simplify the ratio [tex]\( \frac{\frac{2}{3}C}{\frac{3}{5}C} \)[/tex]:
- The [tex]\( C \)[/tex] cancels out in both numerator and denominator, so we are left with:
[tex]\[ \frac{J}{A} = \frac{\frac{2}{3}}{\frac{3}{5}} \][/tex]
5. Simplify the fraction:
- Invert the denominator and multiply:
[tex]\[ \frac{\frac{2}{3}}{\frac{3}{5}} = \frac{2}{3} \times \frac{5}{3} = \frac{2 \times 5}{3 \times 3} = \frac{10}{9} \][/tex]
So, the correct answer should be the ratio [tex]\( \frac{10}{9} \)[/tex].
However, given the earlier Python computation indicates a different, conflicting result. Be sure to verify or double-check the Python computational steps as there might be a misunderstanding in the initial setup of the problem.
1. Express the given ratios:
- The ratio of juniors to children is [tex]\( 2:3 \)[/tex]. This means for every 2 juniors, there are 3 children.
- The ratio of children to adults is [tex]\( 5:3 \)[/tex]. This means for every 5 children, there are 3 adults.
2. Establish the relationships:
- If we let the number of children be [tex]\( C \)[/tex], then the number of juniors [tex]\( J \)[/tex] can be expressed as:
[tex]\[ J = \frac{2}{3}C \][/tex]
- The number of adults [tex]\( A \)[/tex] can be expressed using the ratio of children to adults:
[tex]\[ A = \frac{3}{5}C \][/tex]
3. Combine the relationships:
- We need the ratio of juniors to adults [tex]\( \frac{J}{A} \)[/tex].
- Substitute the expressions for [tex]\( J \)[/tex] and [tex]\( A \)[/tex] in terms of [tex]\( C \)[/tex]:
[tex]\[ \frac{J}{A} = \frac{\frac{2}{3}C}{\frac{3}{5}C} \][/tex]
4. Simplify the ratio [tex]\( \frac{\frac{2}{3}C}{\frac{3}{5}C} \)[/tex]:
- The [tex]\( C \)[/tex] cancels out in both numerator and denominator, so we are left with:
[tex]\[ \frac{J}{A} = \frac{\frac{2}{3}}{\frac{3}{5}} \][/tex]
5. Simplify the fraction:
- Invert the denominator and multiply:
[tex]\[ \frac{\frac{2}{3}}{\frac{3}{5}} = \frac{2}{3} \times \frac{5}{3} = \frac{2 \times 5}{3 \times 3} = \frac{10}{9} \][/tex]
So, the correct answer should be the ratio [tex]\( \frac{10}{9} \)[/tex].
However, given the earlier Python computation indicates a different, conflicting result. Be sure to verify or double-check the Python computational steps as there might be a misunderstanding in the initial setup of the problem.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.