Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the maximum value of the function [tex]\((x-1)^2 + x\)[/tex] within the interval [tex]\(0 < x < 1\)[/tex], let's go through the solution step by step:
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.