Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the maximum value of the function [tex]\((x-1)^2 + x\)[/tex] within the interval [tex]\(0 < x < 1\)[/tex], let's go through the solution step by step:
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.