Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the maximum value of the function [tex]\((x-1)^2 + x\)[/tex] within the interval [tex]\(0 < x < 1\)[/tex], let's go through the solution step by step:
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
1. Define the function:
[tex]\[ f(x) = (x - 1)^2 + x \][/tex]
2. Find the critical points:
To find the critical points, we first need to take the derivative of the function [tex]\(f(x)\)[/tex].
[tex]\[ f'(x) = \frac{d}{dx}\left[(x-1)^2 + x\right] \][/tex]
Using the chain rule and power rule:
[tex]\[ f'(x) = 2(x - 1) \cdot 1 + 1 = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1 \][/tex]
3. Set the derivative equal to zero to find critical points:
[tex]\[ 2x - 1 = 0 \implies x = \frac{1}{2} \][/tex]
Since [tex]\(0 < x < 1\)[/tex], [tex]\(x = \frac{1}{2}\)[/tex] is within the interval.
4. Evaluate the function at the critical points and boundaries:
We need to evaluate the function [tex]\(f(x)\)[/tex] at [tex]\(x = \frac{1}{2}\)[/tex], and also at the boundaries [tex]\(x = 0\)[/tex] and [tex]\(x = 1\)[/tex].
- At [tex]\(x = \frac{1}{2}\)[/tex]:
[tex]\[ f\left(\frac{1}{2}\right) = \left(\frac{1}{2} - 1\right)^2 + \frac{1}{2} = \left(-\frac{1}{2}\right)^2 + \frac{1}{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \][/tex]
- At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = (0 - 1)^2 + 0 = 1 + 0 = 1 \][/tex]
However, note the question specifies [tex]\(0 < x < 1\)[/tex], so we don't include this point for maximizing within the strict interval. Let's just formally note that [tex]\(x=0\)[/tex] would yield [tex]\(f(0)=1\)[/tex].
- At [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = (1 - 1)^2 + 1 = 0 + 1 = 1 \][/tex]
5. Compare the values to find the maximum:
[tex]\[ f\left(\frac{1}{2}\right) = \frac{3}{4} \][/tex]
[tex]\[ f(0) = 1 \][/tex]
[tex]\[ f(1) = 1 \][/tex]
Thus, the maximum value of the function within the interval [tex]\(0 < x < 1\)[/tex] is [tex]\(\boxed{1}\)[/tex].
Hence the correct answer is:
c. 1
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.