Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the given expressions step by step.
### Step-by-Step Solution
#### Expression 1:
[tex]\[ (c + d)^2 \][/tex]
To solve this expression, we need to follow these steps:
1. Identify the variables: Here, [tex]\( c \)[/tex] and [tex]\( d \)[/tex] are the variables in the expression.
2. Sum the variables: Add [tex]\( c \)[/tex] and [tex]\( d \)[/tex].
3. Square the result: Raise the sum to the power of 2.
Given [tex]\( c = 1 \)[/tex] and [tex]\( d = 1 \)[/tex]:
1. [tex]\( c + d = 1 + 1 = 2 \)[/tex]
2. [tex]\((c + d)^2 = 2^2 = 4\)[/tex]
So, the result of the first expression is:
[tex]\[ (c + d)^2 = 4 \][/tex]
#### Expression 2:
[tex]\[ \frac{c}{d} - \frac{m}{n} + 2 \][/tex]
To solve this expression, we need to follow these steps:
1. Identify the variables: Here, [tex]\( c \)[/tex], [tex]\( d \)[/tex], [tex]\( m \)[/tex], and [tex]\( n \)[/tex] are the variables. We need their values.
2. Compute each fraction: Calculate [tex]\( \frac{c}{d} \)[/tex] and [tex]\( \frac{m}{n} \)[/tex].
3. Subtract the fractions and add 2: Subtract the second fraction from the first and then add 2 to the result.
Given [tex]\( c = 1 \)[/tex], [tex]\( d = 1 \)[/tex], [tex]\( m = 1 \)[/tex], and [tex]\( n = 1 \)[/tex]:
1. [tex]\( \frac{c}{d} = \frac{1}{1} = 1 \)[/tex]
2. [tex]\( \frac{m}{n} = \frac{1}{1} = 1 \)[/tex]
3. [tex]\( 1 - 1 + 2 = 0 + 2 = 2 \)[/tex]
So, the result of the second expression is:
[tex]\[ \frac{c}{d} - \frac{m}{n} + 2 = 2 \][/tex]
### Final Results
From solving both expressions, we have:
1. [tex]\((c + d)^2 = 4\)[/tex]
2. [tex]\(\frac{c}{d} - \frac{m}{n} + 2 = 2\)[/tex]
Thus, the results are:
[tex]\[ (4, 2.0) \][/tex]
### Step-by-Step Solution
#### Expression 1:
[tex]\[ (c + d)^2 \][/tex]
To solve this expression, we need to follow these steps:
1. Identify the variables: Here, [tex]\( c \)[/tex] and [tex]\( d \)[/tex] are the variables in the expression.
2. Sum the variables: Add [tex]\( c \)[/tex] and [tex]\( d \)[/tex].
3. Square the result: Raise the sum to the power of 2.
Given [tex]\( c = 1 \)[/tex] and [tex]\( d = 1 \)[/tex]:
1. [tex]\( c + d = 1 + 1 = 2 \)[/tex]
2. [tex]\((c + d)^2 = 2^2 = 4\)[/tex]
So, the result of the first expression is:
[tex]\[ (c + d)^2 = 4 \][/tex]
#### Expression 2:
[tex]\[ \frac{c}{d} - \frac{m}{n} + 2 \][/tex]
To solve this expression, we need to follow these steps:
1. Identify the variables: Here, [tex]\( c \)[/tex], [tex]\( d \)[/tex], [tex]\( m \)[/tex], and [tex]\( n \)[/tex] are the variables. We need their values.
2. Compute each fraction: Calculate [tex]\( \frac{c}{d} \)[/tex] and [tex]\( \frac{m}{n} \)[/tex].
3. Subtract the fractions and add 2: Subtract the second fraction from the first and then add 2 to the result.
Given [tex]\( c = 1 \)[/tex], [tex]\( d = 1 \)[/tex], [tex]\( m = 1 \)[/tex], and [tex]\( n = 1 \)[/tex]:
1. [tex]\( \frac{c}{d} = \frac{1}{1} = 1 \)[/tex]
2. [tex]\( \frac{m}{n} = \frac{1}{1} = 1 \)[/tex]
3. [tex]\( 1 - 1 + 2 = 0 + 2 = 2 \)[/tex]
So, the result of the second expression is:
[tex]\[ \frac{c}{d} - \frac{m}{n} + 2 = 2 \][/tex]
### Final Results
From solving both expressions, we have:
1. [tex]\((c + d)^2 = 4\)[/tex]
2. [tex]\(\frac{c}{d} - \frac{m}{n} + 2 = 2\)[/tex]
Thus, the results are:
[tex]\[ (4, 2.0) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.