Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the given events and data step-by-step to determine the independence of the events A and C, and A and D.
1. Total Burritos Sold:
[tex]\[ \text{Total } = 240 \][/tex]
2. Event A: The burrito is a chicken burrito.
- There are 83 chicken burritos sold.
- Probability [tex]\( P(A) \)[/tex]:
[tex]\[ P(A) = \frac{83}{240} = 0.345833 \][/tex]
3. Event C: The customer requested black beans.
- There are 45 black beans requested.
- Probability [tex]\( P(C) \)[/tex]:
[tex]\[ P(C) = \frac{45}{240} = 0.1875 \][/tex]
4. Combined Event A and C: The burrito is a chicken burrito and the customer requested black beans.
- There are 37 chicken burritos with black beans.
- Probability [tex]\( P(A \cap C) \)[/tex]:
[tex]\[ P(A \cap C) = \frac{37}{240} = 0.154167 \][/tex]
To check for independence of A and C, we compare [tex]\( P(A \cap C) \)[/tex] with [tex]\( P(A) \times P(C) \)[/tex]:
[tex]\[ \text{If } P(A \cap C) = P(A) \times P(C), \text{ then A and C are independent.} \][/tex]
Calculation:
[tex]\[ P(A) \times P(C) = 0.345833 \times 0.1875 = 0.064167 \][/tex]
Since:
[tex]\[ P(A \cap C) \neq P(A) \times P(C) \][/tex]
Events A and C are not independent.
5. Event D: The customer requested pinto beans.
- There are 72 pinto beans requested.
- Probability [tex]\( P(D) \)[/tex]:
[tex]\[ P(D) = \frac{72}{240} = 0.3 \][/tex]
6. Combined Event A and D: The burrito is a chicken burrito and the customer requested pinto beans.
- There are 30 chicken burritos with pinto beans.
- Probability [tex]\( P(A \cap D) \)[/tex]:
[tex]\[ P(A \cap D) = \frac{30}{240} = 0.125 \][/tex]
To check for independence of A and D, we compare [tex]\( P(A \cap D) \)[/tex] with [tex]\( P(A) \times P(D) \)[/tex]:
[tex]\[ \text{If } P(A \cap D) = P(A) \times P(D), \text{ then A and D are independent.} \][/tex]
Calculation:
[tex]\[ P(A) \times P(D) = 0.345833 \times 0.3 = 0.103750 \][/tex]
Since:
[tex]\[ P(A \cap D) \neq P(A) \times P(D) \][/tex]
Events A and D are not independent.
---
In summary:
- Events A and C are not independent.
- Events A and D are not independent either.
1. Total Burritos Sold:
[tex]\[ \text{Total } = 240 \][/tex]
2. Event A: The burrito is a chicken burrito.
- There are 83 chicken burritos sold.
- Probability [tex]\( P(A) \)[/tex]:
[tex]\[ P(A) = \frac{83}{240} = 0.345833 \][/tex]
3. Event C: The customer requested black beans.
- There are 45 black beans requested.
- Probability [tex]\( P(C) \)[/tex]:
[tex]\[ P(C) = \frac{45}{240} = 0.1875 \][/tex]
4. Combined Event A and C: The burrito is a chicken burrito and the customer requested black beans.
- There are 37 chicken burritos with black beans.
- Probability [tex]\( P(A \cap C) \)[/tex]:
[tex]\[ P(A \cap C) = \frac{37}{240} = 0.154167 \][/tex]
To check for independence of A and C, we compare [tex]\( P(A \cap C) \)[/tex] with [tex]\( P(A) \times P(C) \)[/tex]:
[tex]\[ \text{If } P(A \cap C) = P(A) \times P(C), \text{ then A and C are independent.} \][/tex]
Calculation:
[tex]\[ P(A) \times P(C) = 0.345833 \times 0.1875 = 0.064167 \][/tex]
Since:
[tex]\[ P(A \cap C) \neq P(A) \times P(C) \][/tex]
Events A and C are not independent.
5. Event D: The customer requested pinto beans.
- There are 72 pinto beans requested.
- Probability [tex]\( P(D) \)[/tex]:
[tex]\[ P(D) = \frac{72}{240} = 0.3 \][/tex]
6. Combined Event A and D: The burrito is a chicken burrito and the customer requested pinto beans.
- There are 30 chicken burritos with pinto beans.
- Probability [tex]\( P(A \cap D) \)[/tex]:
[tex]\[ P(A \cap D) = \frac{30}{240} = 0.125 \][/tex]
To check for independence of A and D, we compare [tex]\( P(A \cap D) \)[/tex] with [tex]\( P(A) \times P(D) \)[/tex]:
[tex]\[ \text{If } P(A \cap D) = P(A) \times P(D), \text{ then A and D are independent.} \][/tex]
Calculation:
[tex]\[ P(A) \times P(D) = 0.345833 \times 0.3 = 0.103750 \][/tex]
Since:
[tex]\[ P(A \cap D) \neq P(A) \times P(D) \][/tex]
Events A and D are not independent.
---
In summary:
- Events A and C are not independent.
- Events A and D are not independent either.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.