Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the limit [tex]\(\lim_{x \rightarrow 0} \frac{3^x - 1}{x}\)[/tex], we need to analyze the expression [tex]\(\frac{3^x - 1}{x}\)[/tex] as [tex]\(x\)[/tex] approaches 0. Here’s a step-by-step explanation:
1. Recognizing Indeterminate Form:
The given expression [tex]\(\frac{3^x - 1}{x}\)[/tex] as [tex]\(x\)[/tex] approaches 0 is an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex]. To evaluate such limits, we often use L'Hôpital's Rule.
2. Applying L'Hôpital's Rule:
L'Hôpital's Rule states that if [tex]\(\lim_{x \to c} \frac{f(x)}{g(x)}\)[/tex] is an indeterminate form [tex]\( \frac{0}{0} \)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
In our case:
[tex]\[ f(x) = 3^x - 1 \quad \text{and} \quad g(x) = x \][/tex]
3. Differentiate Numerator and Denominator:
We differentiate the numerator and the denominator with respect to [tex]\(x\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(3^x - 1) = 3^x \ln(3) \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x) = 1 \][/tex]
4. Compute the Limit of the Derivatives:
Now applying L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{3^x - 1}{x} = \lim_{x \to 0} \frac{3^x \ln(3)}{1} \][/tex]
As [tex]\(x \to 0\)[/tex], [tex]\(3^x \to 3^0 = 1\)[/tex]:
[tex]\[ \lim_{x \to 0} 3^x \ln(3) = 1 \cdot \ln(3) = \ln(3) \][/tex]
Therefore, the value of [tex]\(\lim_{x \rightarrow 0} \frac{3^x - 1}{x}\)[/tex] is:
[tex]\[ \boxed{\log 3} \][/tex]
1. Recognizing Indeterminate Form:
The given expression [tex]\(\frac{3^x - 1}{x}\)[/tex] as [tex]\(x\)[/tex] approaches 0 is an indeterminate form of the type [tex]\(\frac{0}{0}\)[/tex]. To evaluate such limits, we often use L'Hôpital's Rule.
2. Applying L'Hôpital's Rule:
L'Hôpital's Rule states that if [tex]\(\lim_{x \to c} \frac{f(x)}{g(x)}\)[/tex] is an indeterminate form [tex]\( \frac{0}{0} \)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], then:
[tex]\[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \][/tex]
In our case:
[tex]\[ f(x) = 3^x - 1 \quad \text{and} \quad g(x) = x \][/tex]
3. Differentiate Numerator and Denominator:
We differentiate the numerator and the denominator with respect to [tex]\(x\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(3^x - 1) = 3^x \ln(3) \][/tex]
[tex]\[ g'(x) = \frac{d}{dx}(x) = 1 \][/tex]
4. Compute the Limit of the Derivatives:
Now applying L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{3^x - 1}{x} = \lim_{x \to 0} \frac{3^x \ln(3)}{1} \][/tex]
As [tex]\(x \to 0\)[/tex], [tex]\(3^x \to 3^0 = 1\)[/tex]:
[tex]\[ \lim_{x \to 0} 3^x \ln(3) = 1 \cdot \ln(3) = \ln(3) \][/tex]
Therefore, the value of [tex]\(\lim_{x \rightarrow 0} \frac{3^x - 1}{x}\)[/tex] is:
[tex]\[ \boxed{\log 3} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.