At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the events [tex]\(A\)[/tex] (has gone surfing) and [tex]\(B\)[/tex] (has gone snowboarding) are independent, we need to compare the probabilities [tex]\(P(A \mid B)\)[/tex] and [tex]\(P(A)\)[/tex].
### Step-by-Step Solution:
1. Calculate [tex]\(P(A)\)[/tex]:
[tex]\(P(A)\)[/tex] is the probability that a person has gone surfing.
[tex]\[ P(A) = \frac{\text{Total number of people who have gone surfing}}{\text{Total number of people surveyed}} = \frac{225}{300} = 0.75 \][/tex]
2. Calculate [tex]\(P(B)\)[/tex]:
[tex]\(P(B)\)[/tex] is the probability that a person has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Total number of people who have gone snowboarding}}{\text{Total number of people surveyed}} = \frac{48}{300} = 0.16 \][/tex]
3. Calculate [tex]\(P(A \mid B)\)[/tex]:
[tex]\(P(A \mid B)\)[/tex] is the probability that a person has gone surfing given that they have gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of people who have both surfed and snowboarded}}{\text{Total number of people who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
4. Determine Independence:
We compare [tex]\(P(A \mid B)\)[/tex] with [tex]\(P(A)\)[/tex]. For the events [tex]\(A\)[/tex] and [tex]\(B\)[/tex] to be independent, [tex]\(P(A \mid B)\)[/tex] should equal [tex]\(P(A)\)[/tex].
[tex]\[ P(A \mid B) = 0.75 \quad \text{and} \quad P(A) = 0.75 \][/tex]
Since [tex]\(P(A \mid B) = P(A)\)[/tex], events [tex]\(A\)[/tex] (has gone surfing) and [tex]\(B\)[/tex] (has gone snowboarding) are independent.
Therefore, the correct statement is:
[tex]\[ \text{A and B are independent events because } P(A \mid B) = P(A) = 0.75. \][/tex]
### Step-by-Step Solution:
1. Calculate [tex]\(P(A)\)[/tex]:
[tex]\(P(A)\)[/tex] is the probability that a person has gone surfing.
[tex]\[ P(A) = \frac{\text{Total number of people who have gone surfing}}{\text{Total number of people surveyed}} = \frac{225}{300} = 0.75 \][/tex]
2. Calculate [tex]\(P(B)\)[/tex]:
[tex]\(P(B)\)[/tex] is the probability that a person has gone snowboarding.
[tex]\[ P(B) = \frac{\text{Total number of people who have gone snowboarding}}{\text{Total number of people surveyed}} = \frac{48}{300} = 0.16 \][/tex]
3. Calculate [tex]\(P(A \mid B)\)[/tex]:
[tex]\(P(A \mid B)\)[/tex] is the probability that a person has gone surfing given that they have gone snowboarding.
[tex]\[ P(A \mid B) = \frac{\text{Number of people who have both surfed and snowboarded}}{\text{Total number of people who have gone snowboarding}} = \frac{36}{48} = 0.75 \][/tex]
4. Determine Independence:
We compare [tex]\(P(A \mid B)\)[/tex] with [tex]\(P(A)\)[/tex]. For the events [tex]\(A\)[/tex] and [tex]\(B\)[/tex] to be independent, [tex]\(P(A \mid B)\)[/tex] should equal [tex]\(P(A)\)[/tex].
[tex]\[ P(A \mid B) = 0.75 \quad \text{and} \quad P(A) = 0.75 \][/tex]
Since [tex]\(P(A \mid B) = P(A)\)[/tex], events [tex]\(A\)[/tex] (has gone surfing) and [tex]\(B\)[/tex] (has gone snowboarding) are independent.
Therefore, the correct statement is:
[tex]\[ \text{A and B are independent events because } P(A \mid B) = P(A) = 0.75. \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.