Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the acid [tex]\(X\)[/tex] and the base [tex]\(Y\)[/tex] which produce [tex]\(Mg_3(PO_4)_2\)[/tex], let's analyze each pair of reactants given in the options:
1. [tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
2. [tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
3. [tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
4. [tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
Our goal is to identify the correct pair that produces [tex]\(Mg_3(PO_4)_2\)[/tex], magnesium phosphate.
### Step-by-step Analysis:
#### Option 1:
[tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
- [tex]\(H_3PO_3\)[/tex] is phosphorous acid.
- Basic form of phosphorous acid does not typically lead to [tex]\(Mg_3(PO_4)_2\)[/tex].
- Phosphorous acid primarily leads to phosphites, not phosphates.
Therefore, this combination is less likely to correctly produce [tex]\(Mg_3(PO_4)_2\)[/tex].
#### Option 2:
[tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
- [tex]\(H_3PO_4\)[/tex] is phosphoric acid, which is commonly used to create phosphates.
- [tex]\(Mg(OH)_2\)[/tex] is magnesium hydroxide, a strong base.
The reaction between phosphoric acid and magnesium hydroxide can form magnesium phosphate:
[tex]\[ 2H_3PO_4 + 3Mg(OH)_2 \rightarrow Mg_3(PO_4)_2 + 6H_2O \][/tex]
This reaction fits perfectly, producing magnesium phosphate [tex]\( ( Mg_3(PO_4)_2) \)[/tex].
#### Option 3:
[tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
- [tex]\(H_3PO_4\)[/tex] is phosphoric acid.
- [tex]\(Ca(OH)_2\)[/tex] is calcium hydroxide, another strong base.
The reaction would form calcium phosphate instead of magnesium phosphate:
[tex]\[ 2H_3PO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 6H_2O \][/tex]
Since the product in this case is calcium phosphate [tex]\((Ca_3(PO_4)_2)\)[/tex], not magnesium phosphate [tex]\((Mg_3(PO_4)_2)\)[/tex], this option is incorrect.
#### Option 4:
[tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
- [tex]\(H_3PO_3\)[/tex] is phosphorous acid.
- [tex]\(Ca(OH)_2\)[/tex] is calcium hydroxide.
This reaction would also not lead to the correct product. It would form calcium phosphite, and we need to form a phosphate.
### Conclusion:
- Only the second option:
[tex]\[ X = H_3PO_4, Y = Mg(OH)_2 \][/tex]
leads to the formation of [tex]\(Mg_3(PO_4)_2\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{X=H_3PO_4; Y=Mg(OH)_2} \][/tex]
1. [tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
2. [tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
3. [tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
4. [tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
Our goal is to identify the correct pair that produces [tex]\(Mg_3(PO_4)_2\)[/tex], magnesium phosphate.
### Step-by-step Analysis:
#### Option 1:
[tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
- [tex]\(H_3PO_3\)[/tex] is phosphorous acid.
- Basic form of phosphorous acid does not typically lead to [tex]\(Mg_3(PO_4)_2\)[/tex].
- Phosphorous acid primarily leads to phosphites, not phosphates.
Therefore, this combination is less likely to correctly produce [tex]\(Mg_3(PO_4)_2\)[/tex].
#### Option 2:
[tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Mg(OH)_2\)[/tex]
- [tex]\(H_3PO_4\)[/tex] is phosphoric acid, which is commonly used to create phosphates.
- [tex]\(Mg(OH)_2\)[/tex] is magnesium hydroxide, a strong base.
The reaction between phosphoric acid and magnesium hydroxide can form magnesium phosphate:
[tex]\[ 2H_3PO_4 + 3Mg(OH)_2 \rightarrow Mg_3(PO_4)_2 + 6H_2O \][/tex]
This reaction fits perfectly, producing magnesium phosphate [tex]\( ( Mg_3(PO_4)_2) \)[/tex].
#### Option 3:
[tex]\(X = H_3PO_4\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
- [tex]\(H_3PO_4\)[/tex] is phosphoric acid.
- [tex]\(Ca(OH)_2\)[/tex] is calcium hydroxide, another strong base.
The reaction would form calcium phosphate instead of magnesium phosphate:
[tex]\[ 2H_3PO_4 + 3Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 6H_2O \][/tex]
Since the product in this case is calcium phosphate [tex]\((Ca_3(PO_4)_2)\)[/tex], not magnesium phosphate [tex]\((Mg_3(PO_4)_2)\)[/tex], this option is incorrect.
#### Option 4:
[tex]\(X = H_3PO_3\)[/tex], [tex]\(Y = Ca(OH)_2\)[/tex]
- [tex]\(H_3PO_3\)[/tex] is phosphorous acid.
- [tex]\(Ca(OH)_2\)[/tex] is calcium hydroxide.
This reaction would also not lead to the correct product. It would form calcium phosphite, and we need to form a phosphate.
### Conclusion:
- Only the second option:
[tex]\[ X = H_3PO_4, Y = Mg(OH)_2 \][/tex]
leads to the formation of [tex]\(Mg_3(PO_4)_2\)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{X=H_3PO_4; Y=Mg(OH)_2} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.