Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the expression [tex]\(\frac{4m - 9n}{16m^2} - \frac{9n^2 + 1}{4m - 3n}\)[/tex], we need to follow several steps to simplify it. Let's break down the problem step-by-step.
Step 1: Identifying and Rewriting the Expressions
We have two fractions:
1. [tex]\(\frac{4m - 9n}{16m^2}\)[/tex]
2. [tex]\(\frac{9n^2 + 1}{4m - 3n}\)[/tex]
To subtract these fractions, we'll need a common denominator.
Step 2: Finding a Common Denominator
The denominators in the two fractions are [tex]\(16m^2\)[/tex] and [tex]\(4m - 3n\)[/tex]. To find a common denominator, we can multiply these two expressions together:
[tex]\[ 16m^2 \cdot (4m - 3n) \][/tex]
Step 3: Rewriting Each Fraction with the Common Denominator
Each term must be rewritten to have the common denominator.
For the first fraction:
[tex]\[ \frac{4m - 9n}{16m^2} \cdot \frac{4m - 3n}{4m - 3n} = \frac{(4m - 9n)(4m - 3n)}{16m^2(4m - 3n)} \][/tex]
For the second fraction:
[tex]\[ \frac{9n^2 + 1}{4m - 3n} \cdot \frac{16m^2}{16m^2} = \frac{(9n^2 + 1) \cdot 16m^2}{16m^2(4m - 3n)} \][/tex]
Step 4: Performing the Subtraction
Now we have:
[tex]\[ \frac{(4m - 9n)(4m - 3n)}{16m^2(4m - 3n)} - \frac{16m^2(9n^2 + 1)}{16m^2(4m - 3n)} \][/tex]
Both fractions share the same denominator, so we can subtract the numerators directly:
[tex]\[ \frac{(4m - 9n)(4m - 3n) - 16m^2(9n^2 + 1)}{16m^2(4m - 3n)} \][/tex]
Step 5: Simplifying the Numerator
Let's expand and simplify the numerator.
Expanding [tex]\((4m - 9n)(4m - 3n)\)[/tex]:
[tex]\[ (4m - 9n)(4m - 3n) = 16m^2 - 12mn - 36mn + 27n^2 = 16m^2 - 48mn + 27n^2 \][/tex]
So the numerator becomes:
[tex]\[ 16m^2 - 48mn + 27n^2 - 16m^2(9n^2 + 1) \][/tex]
Distribute [tex]\(16m^2\)[/tex] in the second term:
[tex]\[ 16m^2 - 48mn + 27n^2 - 144m^2n^2 - 16m^2 \][/tex]
Combine like terms:
[tex]\[ -48mn + 27n^2 - 144m^2n^2 \][/tex]
We can factor out a common factor from the above expression, specifically [tex]\(3n\)[/tex]:
[tex]\[ 3n(-48mn - 16m + 9n) \][/tex]
Step 6: Writing the Final Expression
Putting it all together, our final expression is:
[tex]\[ \frac{3n(-48mn - 16m + 9n)}{16m^2(4m - 3n)} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \frac{3n(-48mn - 16m + 9n)}{16m^2(4m - 3n)} \][/tex]
Step 1: Identifying and Rewriting the Expressions
We have two fractions:
1. [tex]\(\frac{4m - 9n}{16m^2}\)[/tex]
2. [tex]\(\frac{9n^2 + 1}{4m - 3n}\)[/tex]
To subtract these fractions, we'll need a common denominator.
Step 2: Finding a Common Denominator
The denominators in the two fractions are [tex]\(16m^2\)[/tex] and [tex]\(4m - 3n\)[/tex]. To find a common denominator, we can multiply these two expressions together:
[tex]\[ 16m^2 \cdot (4m - 3n) \][/tex]
Step 3: Rewriting Each Fraction with the Common Denominator
Each term must be rewritten to have the common denominator.
For the first fraction:
[tex]\[ \frac{4m - 9n}{16m^2} \cdot \frac{4m - 3n}{4m - 3n} = \frac{(4m - 9n)(4m - 3n)}{16m^2(4m - 3n)} \][/tex]
For the second fraction:
[tex]\[ \frac{9n^2 + 1}{4m - 3n} \cdot \frac{16m^2}{16m^2} = \frac{(9n^2 + 1) \cdot 16m^2}{16m^2(4m - 3n)} \][/tex]
Step 4: Performing the Subtraction
Now we have:
[tex]\[ \frac{(4m - 9n)(4m - 3n)}{16m^2(4m - 3n)} - \frac{16m^2(9n^2 + 1)}{16m^2(4m - 3n)} \][/tex]
Both fractions share the same denominator, so we can subtract the numerators directly:
[tex]\[ \frac{(4m - 9n)(4m - 3n) - 16m^2(9n^2 + 1)}{16m^2(4m - 3n)} \][/tex]
Step 5: Simplifying the Numerator
Let's expand and simplify the numerator.
Expanding [tex]\((4m - 9n)(4m - 3n)\)[/tex]:
[tex]\[ (4m - 9n)(4m - 3n) = 16m^2 - 12mn - 36mn + 27n^2 = 16m^2 - 48mn + 27n^2 \][/tex]
So the numerator becomes:
[tex]\[ 16m^2 - 48mn + 27n^2 - 16m^2(9n^2 + 1) \][/tex]
Distribute [tex]\(16m^2\)[/tex] in the second term:
[tex]\[ 16m^2 - 48mn + 27n^2 - 144m^2n^2 - 16m^2 \][/tex]
Combine like terms:
[tex]\[ -48mn + 27n^2 - 144m^2n^2 \][/tex]
We can factor out a common factor from the above expression, specifically [tex]\(3n\)[/tex]:
[tex]\[ 3n(-48mn - 16m + 9n) \][/tex]
Step 6: Writing the Final Expression
Putting it all together, our final expression is:
[tex]\[ \frac{3n(-48mn - 16m + 9n)}{16m^2(4m - 3n)} \][/tex]
Thus, the simplified form of the given expression is:
[tex]\[ \frac{3n(-48mn - 16m + 9n)}{16m^2(4m - 3n)} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.