Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find out how much energy the water absorbed in the experiment according to the calorimeter data, we'll follow these steps:
1. Determine the given values from the calorimeter data:
- Mass of the water, [tex]\( m = 100.0 \, \text{g} \)[/tex]
- Specific heat of water, [tex]\( c = 4.18 \, \text{J/g}^\circ\text{C} \)[/tex]
- Initial temperature, [tex]\( T_i = 21.2^\circ\text{C} \)[/tex]
- Final temperature, [tex]\( T_f = 46.2^\circ\text{C} \)[/tex]
2. Calculate the change in temperature [tex]\(\Delta T\)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substituting the values:
[tex]\[ \Delta T = 46.2^\circ\text{C} - 21.2^\circ\text{C} = 25.0^\circ\text{C} \][/tex]
3. Use the formula for the amount of heat absorbed or released in a calorimetry process:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
where [tex]\( q \)[/tex] is the heat absorbed, [tex]\( m \)[/tex] is the mass, [tex]\( c \)[/tex] is the specific heat, and [tex]\(\Delta T\)[/tex] is the change in temperature.
4. Substitute the values into the formula:
[tex]\[ q = 100.0 \, \text{g} \times 4.18 \, \text{J/g}^\circ\text{C} \times 25.0^\circ\text{C} \][/tex]
5. Calculate the energy absorbed:
[tex]\[ q = 100.0 \times 4.18 \times 25.0 = 10450.0 \, \text{J} \][/tex]
Therefore, the energy the water absorbed in this experiment is [tex]\( 10450.0 \, \text{J} \)[/tex].
1. Determine the given values from the calorimeter data:
- Mass of the water, [tex]\( m = 100.0 \, \text{g} \)[/tex]
- Specific heat of water, [tex]\( c = 4.18 \, \text{J/g}^\circ\text{C} \)[/tex]
- Initial temperature, [tex]\( T_i = 21.2^\circ\text{C} \)[/tex]
- Final temperature, [tex]\( T_f = 46.2^\circ\text{C} \)[/tex]
2. Calculate the change in temperature [tex]\(\Delta T\)[/tex]:
[tex]\[ \Delta T = T_f - T_i \][/tex]
Substituting the values:
[tex]\[ \Delta T = 46.2^\circ\text{C} - 21.2^\circ\text{C} = 25.0^\circ\text{C} \][/tex]
3. Use the formula for the amount of heat absorbed or released in a calorimetry process:
[tex]\[ q = m \cdot c \cdot \Delta T \][/tex]
where [tex]\( q \)[/tex] is the heat absorbed, [tex]\( m \)[/tex] is the mass, [tex]\( c \)[/tex] is the specific heat, and [tex]\(\Delta T\)[/tex] is the change in temperature.
4. Substitute the values into the formula:
[tex]\[ q = 100.0 \, \text{g} \times 4.18 \, \text{J/g}^\circ\text{C} \times 25.0^\circ\text{C} \][/tex]
5. Calculate the energy absorbed:
[tex]\[ q = 100.0 \times 4.18 \times 25.0 = 10450.0 \, \text{J} \][/tex]
Therefore, the energy the water absorbed in this experiment is [tex]\( 10450.0 \, \text{J} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.