Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the number of real and complex roots of the polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex], we start by considering its degree. This polynomial is of degree 3, which means it has three roots in total (counting multiplicity), according to the Fundamental Theorem of Algebra.
We need to examine the nature of these roots more closely.
1. Finding the roots:
To solve for the roots of the polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex], complex and real roots are identified through either algebraic methods or by using root-finding techniques for polynomials. However, we already know that the calculation has provided us with the roots, confirming that we have a detailed understanding of their nature.
2. Analyzing the root types:
From this process, it is confirmed there is a mixture of real and complex roots. Specifically:
- The polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex] has 1 real root.
- The polynomial also has 2 complex roots.
Given the nature of these roots, we can conclude our answer.
So, the polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex] has:
- 1 real root
- 2 complex roots
Therefore, the correct answer is:
B. 1 real root and 2 complex roots
We need to examine the nature of these roots more closely.
1. Finding the roots:
To solve for the roots of the polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex], complex and real roots are identified through either algebraic methods or by using root-finding techniques for polynomials. However, we already know that the calculation has provided us with the roots, confirming that we have a detailed understanding of their nature.
2. Analyzing the root types:
From this process, it is confirmed there is a mixture of real and complex roots. Specifically:
- The polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex] has 1 real root.
- The polynomial also has 2 complex roots.
Given the nature of these roots, we can conclude our answer.
So, the polynomial [tex]\( F(x) = x^3 + 2x^2 + 4x + 8 \)[/tex] has:
- 1 real root
- 2 complex roots
Therefore, the correct answer is:
B. 1 real root and 2 complex roots
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.