Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Alright, let's break down the given equation step-by-step to prove that the left-hand side is equal to the right-hand side:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.