Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's break down the given equation step-by-step to prove that the left-hand side is equal to the right-hand side:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.