Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's break down the given equation step-by-step to prove that the left-hand side is equal to the right-hand side:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.