Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let's break down the given equation step-by-step to prove that the left-hand side is equal to the right-hand side:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan (A+B) \][/tex]
### Step 1: Use the Difference of Squares Identity
We start by simplifying the numerator using the difference of squares identity:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]
### Step 2: Simplify the Denominator Using Angle Addition and Subtraction Formulas
To simplify the term [tex]\(\sin A \cdot \cos A - \sin B \cdot \cos B\)[/tex], we can use the angle addition and subtraction formulas:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]
Thus, the denominator becomes:
[tex]\[ \sin A \cdot \cos A - \sin B \cdot \cos B = \frac{1}{2} \sin(2A) - \frac{1}{2} \sin(2B) = \frac{1}{2} (\sin(2A) - \sin(2B)) \][/tex]
### Step 3: Use Sum-to-Product Identities
Next, we use the sum-to-product identities:
[tex]\[ \sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right) \][/tex]
Applying this to our expression:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(A + B\right) \sin\left(A - B\right) \][/tex]
Thus:
[tex]\[ \frac{1}{2} (\sin(2A) - \sin(2B)) = \frac{1}{2} \cdot 2 \cos(A + B) \sin(A - B) = \cos(A + B) \sin(A - B) \][/tex]
### Step 4: Substitute These into the Original Fraction
Now we substitute the simplified numerator and denominator back into the original fraction:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} \][/tex]
### Step 5: Cancel the Common Factor
Notice that [tex]\(\sin(A - B)\)[/tex] is a common factor in the numerator and denominator:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A + B) \sin(A - B)} = \frac{\sin A + \sin B}{\cos(A + B)} \][/tex]
### Step 6: Recognize the Tangent Function
Recall the definition of the tangent function:
[tex]\[ \tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} \][/tex]
We can recognize that:
[tex]\[ \frac{\sin(\alpha) + \sin(\beta)}{\cos (\alpha + \beta)} \Rightarrow \sin\alpha = \sin A \quad \text{and} \quad \sin\beta = \sin B, i.e., \alpha = A \quad \text{and} \quad \beta = B \][/tex]
Thus:
[tex]\[ \frac{\sin(A + B)}{\cos(A + B)} = \tan(A + B) \][/tex]
Therefore, the given equation simplifies to:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cdot \cos A - \sin B \cdot \cos B} = \tan(A+B) \][/tex]
So, the equation is an identity and holds true.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.