Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let’s tackle the problem step-by-step.
Step 1: Write down the given equation
[tex]\( 2x + 2(x - 4) = 5x + 1 \)[/tex]
Step 2: Simplify the left-hand side (LHS) of the equation
First, distribute the 2 into the terms inside the parenthesis:
[tex]\[ 2x + 2(x - 4) = 2x + 2x - 8 \][/tex]
Combine like terms on the LHS:
[tex]\[ 2x + 2x - 8 = 4x - 8 \][/tex]
So, the simplified equation is:
[tex]\[ 4x - 8 = 5x + 1 \][/tex]
Step 3: Bring all terms involving [tex]\(x\)[/tex] to one side and constants to the other side
Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 8 - 4x = 5x + 1 - 4x \][/tex]
[tex]\[ -8 = x + 1 \][/tex]
Now, subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ -8 - 1 = x \][/tex]
[tex]\[ -9 = x \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -9 \][/tex]
Step 4: Categorize the equation
We need to determine whether the equation is:
- Conditional:
- An equation that is true for one or more, but not all, values of the variable.
- An identity:
- An equation that is true for all values of the variable.
- A contradiction:
- An equation that is never true, for any value of the variable.
Since the equation simplifies to a single specific value [tex]\(x = -9\)[/tex], it is true for this specific value only. This means the equation is conditional.
Conclusion
- Type of Equation: Conditional
- Solution Set: [tex]\(\{ -9 \}\)[/tex]
Therefore, the equation [tex]\(2x + 2(x - 4) = 5x + 1\)[/tex] is a conditional equation, and the solution set is [tex]\(\{ -9 \}\)[/tex].
Step 1: Write down the given equation
[tex]\( 2x + 2(x - 4) = 5x + 1 \)[/tex]
Step 2: Simplify the left-hand side (LHS) of the equation
First, distribute the 2 into the terms inside the parenthesis:
[tex]\[ 2x + 2(x - 4) = 2x + 2x - 8 \][/tex]
Combine like terms on the LHS:
[tex]\[ 2x + 2x - 8 = 4x - 8 \][/tex]
So, the simplified equation is:
[tex]\[ 4x - 8 = 5x + 1 \][/tex]
Step 3: Bring all terms involving [tex]\(x\)[/tex] to one side and constants to the other side
Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 8 - 4x = 5x + 1 - 4x \][/tex]
[tex]\[ -8 = x + 1 \][/tex]
Now, subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ -8 - 1 = x \][/tex]
[tex]\[ -9 = x \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -9 \][/tex]
Step 4: Categorize the equation
We need to determine whether the equation is:
- Conditional:
- An equation that is true for one or more, but not all, values of the variable.
- An identity:
- An equation that is true for all values of the variable.
- A contradiction:
- An equation that is never true, for any value of the variable.
Since the equation simplifies to a single specific value [tex]\(x = -9\)[/tex], it is true for this specific value only. This means the equation is conditional.
Conclusion
- Type of Equation: Conditional
- Solution Set: [tex]\(\{ -9 \}\)[/tex]
Therefore, the equation [tex]\(2x + 2(x - 4) = 5x + 1\)[/tex] is a conditional equation, and the solution set is [tex]\(\{ -9 \}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.