Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let’s tackle the problem step-by-step.
Step 1: Write down the given equation
[tex]\( 2x + 2(x - 4) = 5x + 1 \)[/tex]
Step 2: Simplify the left-hand side (LHS) of the equation
First, distribute the 2 into the terms inside the parenthesis:
[tex]\[ 2x + 2(x - 4) = 2x + 2x - 8 \][/tex]
Combine like terms on the LHS:
[tex]\[ 2x + 2x - 8 = 4x - 8 \][/tex]
So, the simplified equation is:
[tex]\[ 4x - 8 = 5x + 1 \][/tex]
Step 3: Bring all terms involving [tex]\(x\)[/tex] to one side and constants to the other side
Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 8 - 4x = 5x + 1 - 4x \][/tex]
[tex]\[ -8 = x + 1 \][/tex]
Now, subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ -8 - 1 = x \][/tex]
[tex]\[ -9 = x \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -9 \][/tex]
Step 4: Categorize the equation
We need to determine whether the equation is:
- Conditional:
- An equation that is true for one or more, but not all, values of the variable.
- An identity:
- An equation that is true for all values of the variable.
- A contradiction:
- An equation that is never true, for any value of the variable.
Since the equation simplifies to a single specific value [tex]\(x = -9\)[/tex], it is true for this specific value only. This means the equation is conditional.
Conclusion
- Type of Equation: Conditional
- Solution Set: [tex]\(\{ -9 \}\)[/tex]
Therefore, the equation [tex]\(2x + 2(x - 4) = 5x + 1\)[/tex] is a conditional equation, and the solution set is [tex]\(\{ -9 \}\)[/tex].
Step 1: Write down the given equation
[tex]\( 2x + 2(x - 4) = 5x + 1 \)[/tex]
Step 2: Simplify the left-hand side (LHS) of the equation
First, distribute the 2 into the terms inside the parenthesis:
[tex]\[ 2x + 2(x - 4) = 2x + 2x - 8 \][/tex]
Combine like terms on the LHS:
[tex]\[ 2x + 2x - 8 = 4x - 8 \][/tex]
So, the simplified equation is:
[tex]\[ 4x - 8 = 5x + 1 \][/tex]
Step 3: Bring all terms involving [tex]\(x\)[/tex] to one side and constants to the other side
Subtract [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 8 - 4x = 5x + 1 - 4x \][/tex]
[tex]\[ -8 = x + 1 \][/tex]
Now, subtract 1 from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ -8 - 1 = x \][/tex]
[tex]\[ -9 = x \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = -9 \][/tex]
Step 4: Categorize the equation
We need to determine whether the equation is:
- Conditional:
- An equation that is true for one or more, but not all, values of the variable.
- An identity:
- An equation that is true for all values of the variable.
- A contradiction:
- An equation that is never true, for any value of the variable.
Since the equation simplifies to a single specific value [tex]\(x = -9\)[/tex], it is true for this specific value only. This means the equation is conditional.
Conclusion
- Type of Equation: Conditional
- Solution Set: [tex]\(\{ -9 \}\)[/tex]
Therefore, the equation [tex]\(2x + 2(x - 4) = 5x + 1\)[/tex] is a conditional equation, and the solution set is [tex]\(\{ -9 \}\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.