At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which step is not algebraically correct when solving for [tex]\( t \)[/tex], let's analyze each step carefully.
### Step 1:
[tex]\[ w \cdot r_1 \cdot t = r_2 \cdot t \][/tex]
To isolate [tex]\( t \)[/tex], we can divide both sides of the equation by [tex]\( t \)[/tex], assuming [tex]\( t \neq 0 \)[/tex]:
[tex]\[ w \cdot r_1 = r_2 \][/tex]
This is algebraically correct.
### Step 2:
[tex]\[ w = t \cdot (r_1 + r_2) \][/tex]
To solve for [tex]\( t \)[/tex], we divide both sides by [tex]\( (r_1 + r_2) \)[/tex], assuming [tex]\( r_1 + r_2 \neq 0 \)[/tex]:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]
This is also algebraically correct.
### Step 3:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
To solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{w}{r_1 \cdot r_2} \][/tex]
However, this step is not correct given the original equation. The relationship described by [tex]\( w = r_1 \cdot r_2 \cdot t \)[/tex] doesn't match the structure of the original equation [tex]\( w \cdot r_1 \cdot t = r_2 \cdot t \)[/tex], and therefore the manipulation of the variables leads to an incorrect representation.
### Conclusion:
The third step:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
is not algebraically correct when solving for [tex]\( t \)[/tex].
So, the incorrect step is:
[tex]\[ \boxed{3} \][/tex]
### Step 1:
[tex]\[ w \cdot r_1 \cdot t = r_2 \cdot t \][/tex]
To isolate [tex]\( t \)[/tex], we can divide both sides of the equation by [tex]\( t \)[/tex], assuming [tex]\( t \neq 0 \)[/tex]:
[tex]\[ w \cdot r_1 = r_2 \][/tex]
This is algebraically correct.
### Step 2:
[tex]\[ w = t \cdot (r_1 + r_2) \][/tex]
To solve for [tex]\( t \)[/tex], we divide both sides by [tex]\( (r_1 + r_2) \)[/tex], assuming [tex]\( r_1 + r_2 \neq 0 \)[/tex]:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]
This is also algebraically correct.
### Step 3:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
To solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{w}{r_1 \cdot r_2} \][/tex]
However, this step is not correct given the original equation. The relationship described by [tex]\( w = r_1 \cdot r_2 \cdot t \)[/tex] doesn't match the structure of the original equation [tex]\( w \cdot r_1 \cdot t = r_2 \cdot t \)[/tex], and therefore the manipulation of the variables leads to an incorrect representation.
### Conclusion:
The third step:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
is not algebraically correct when solving for [tex]\( t \)[/tex].
So, the incorrect step is:
[tex]\[ \boxed{3} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.