Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which step is not algebraically correct when solving for [tex]\( t \)[/tex], let's analyze each step carefully.
### Step 1:
[tex]\[ w \cdot r_1 \cdot t = r_2 \cdot t \][/tex]
To isolate [tex]\( t \)[/tex], we can divide both sides of the equation by [tex]\( t \)[/tex], assuming [tex]\( t \neq 0 \)[/tex]:
[tex]\[ w \cdot r_1 = r_2 \][/tex]
This is algebraically correct.
### Step 2:
[tex]\[ w = t \cdot (r_1 + r_2) \][/tex]
To solve for [tex]\( t \)[/tex], we divide both sides by [tex]\( (r_1 + r_2) \)[/tex], assuming [tex]\( r_1 + r_2 \neq 0 \)[/tex]:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]
This is also algebraically correct.
### Step 3:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
To solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{w}{r_1 \cdot r_2} \][/tex]
However, this step is not correct given the original equation. The relationship described by [tex]\( w = r_1 \cdot r_2 \cdot t \)[/tex] doesn't match the structure of the original equation [tex]\( w \cdot r_1 \cdot t = r_2 \cdot t \)[/tex], and therefore the manipulation of the variables leads to an incorrect representation.
### Conclusion:
The third step:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
is not algebraically correct when solving for [tex]\( t \)[/tex].
So, the incorrect step is:
[tex]\[ \boxed{3} \][/tex]
### Step 1:
[tex]\[ w \cdot r_1 \cdot t = r_2 \cdot t \][/tex]
To isolate [tex]\( t \)[/tex], we can divide both sides of the equation by [tex]\( t \)[/tex], assuming [tex]\( t \neq 0 \)[/tex]:
[tex]\[ w \cdot r_1 = r_2 \][/tex]
This is algebraically correct.
### Step 2:
[tex]\[ w = t \cdot (r_1 + r_2) \][/tex]
To solve for [tex]\( t \)[/tex], we divide both sides by [tex]\( (r_1 + r_2) \)[/tex], assuming [tex]\( r_1 + r_2 \neq 0 \)[/tex]:
[tex]\[ t = \frac{w}{r_1 + r_2} \][/tex]
This is also algebraically correct.
### Step 3:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
To solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{w}{r_1 \cdot r_2} \][/tex]
However, this step is not correct given the original equation. The relationship described by [tex]\( w = r_1 \cdot r_2 \cdot t \)[/tex] doesn't match the structure of the original equation [tex]\( w \cdot r_1 \cdot t = r_2 \cdot t \)[/tex], and therefore the manipulation of the variables leads to an incorrect representation.
### Conclusion:
The third step:
[tex]\[ w = r_1 \cdot r_2 \cdot t \][/tex]
is not algebraically correct when solving for [tex]\( t \)[/tex].
So, the incorrect step is:
[tex]\[ \boxed{3} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.