Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\( y = a x^2 + c \)[/tex] for [tex]\( x \)[/tex], let's follow a step-by-step process:
1. Isolate the quadratic term:
Begin by isolating the term with [tex]\( x^2 \)[/tex].
[tex]\[ y = a x^2 + c \][/tex]
Subtract [tex]\( c \)[/tex] from both sides to isolate [tex]\( a x^2 \)[/tex]:
[tex]\[ y - c = a x^2 \][/tex]
2. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by [tex]\( a \)[/tex] to solve for [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 = \frac{y - c}{a} \][/tex]
3. Simplify the expression for [tex]\( x \)[/tex]:
Take the square root of both sides to solve for [tex]\( x \)[/tex]. Remember that taking the square root of both sides will give both the positive and negative roots.
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]
Let's review the given multiple choice options to find a match to our derived solution:
1. [tex]\( x = \pm \sqrt{a y - c} \)[/tex]
This option is incorrect because it does not correctly isolate and simplify the equation for [tex]\( x \)[/tex].
2. [tex]\( x = \pm \sqrt{\frac{y - c}{a}} \)[/tex]
This option matches our derived solution exactly, thus it is correct.
3. [tex]\( x = \sqrt{\frac{y}{a} - c} \)[/tex]
This option is incorrect because it incorrectly handles the separation of terms in the denominator.
4. [tex]\( x = \sqrt{\frac{y + c}{a}} \)[/tex]
This option is incorrect because it incorrectly adds [tex]\( c \)[/tex] inside the square root instead of subtracting it before dividing by [tex]\( a \)[/tex].
Therefore, the correct solution based on our careful analysis and step-by-step process is:
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]
Hence, the correct answer is:
[tex]\[ 2 \][/tex]
1. Isolate the quadratic term:
Begin by isolating the term with [tex]\( x^2 \)[/tex].
[tex]\[ y = a x^2 + c \][/tex]
Subtract [tex]\( c \)[/tex] from both sides to isolate [tex]\( a x^2 \)[/tex]:
[tex]\[ y - c = a x^2 \][/tex]
2. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by [tex]\( a \)[/tex] to solve for [tex]\( x^2 \)[/tex]:
[tex]\[ x^2 = \frac{y - c}{a} \][/tex]
3. Simplify the expression for [tex]\( x \)[/tex]:
Take the square root of both sides to solve for [tex]\( x \)[/tex]. Remember that taking the square root of both sides will give both the positive and negative roots.
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]
Let's review the given multiple choice options to find a match to our derived solution:
1. [tex]\( x = \pm \sqrt{a y - c} \)[/tex]
This option is incorrect because it does not correctly isolate and simplify the equation for [tex]\( x \)[/tex].
2. [tex]\( x = \pm \sqrt{\frac{y - c}{a}} \)[/tex]
This option matches our derived solution exactly, thus it is correct.
3. [tex]\( x = \sqrt{\frac{y}{a} - c} \)[/tex]
This option is incorrect because it incorrectly handles the separation of terms in the denominator.
4. [tex]\( x = \sqrt{\frac{y + c}{a}} \)[/tex]
This option is incorrect because it incorrectly adds [tex]\( c \)[/tex] inside the square root instead of subtracting it before dividing by [tex]\( a \)[/tex].
Therefore, the correct solution based on our careful analysis and step-by-step process is:
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]
Hence, the correct answer is:
[tex]\[ 2 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.