Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's check all the given equations step by step to see which ones are equivalent:
Given equations:
1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 1 \)[/tex]
3. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
4. [tex]\( n = \frac{a + 360}{180} \)[/tex]
### Step 1: Simplify Equation 1
[tex]\[ a = 180(n - 2) \][/tex]
We solve for [tex]\( n \)[/tex]:
[tex]\[ a = 180n - 360 \][/tex]
[tex]\[ 180n = a + 360 \][/tex]
[tex]\[ n = \frac{a + 360}{180} \][/tex]
So, we have:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
### Step 2: Compare the Result with Other Equations
#### Compare with Equation 2:
Equation 2 is:
[tex]\[ n = \frac{a}{180} + 1 \][/tex]
Clearly, the right-hand side [tex]\(\frac{a}{180} + 1\)[/tex] is not equal to [tex]\(\frac{a + 360}{180}\)[/tex]. Therefore, Equation 2 is not equivalent to Equation 1.
#### Compare with Equation 3:
Equation 3 is:
[tex]\[ n = \frac{a}{180} + 2 \][/tex]
Let's test this result:
[tex]\[ \frac{a + 360}{180} = \frac{a}{180} + \frac{360}{180} = \frac{a}{180} + 2 \][/tex]
Clearly, [tex]\(\frac{a + 360}{180}\)[/tex] is equal to [tex]\(\frac{a}{180} + 2\)[/tex]. Therefore, Equation 3 is equivalent to Equation 1.
#### Compare with Equation 4:
Equation 4 is:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
We already obtained [tex]\( n = \frac{a + 360}{180} \)[/tex] from Equation 1. Therefore, Equation 4 is equivalent to Equation 1.
### Summary
After comparing, we find that Equations 3 and 4 are equivalent to Equation 1. Therefore, the equivalent equations are:
1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
3. [tex]\( n = \frac{a + 360}{180} \)[/tex]
Equation 2, [tex]\( n = \frac{a}{180} + 1 \)[/tex], is not equivalent to the others.
Given equations:
1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 1 \)[/tex]
3. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
4. [tex]\( n = \frac{a + 360}{180} \)[/tex]
### Step 1: Simplify Equation 1
[tex]\[ a = 180(n - 2) \][/tex]
We solve for [tex]\( n \)[/tex]:
[tex]\[ a = 180n - 360 \][/tex]
[tex]\[ 180n = a + 360 \][/tex]
[tex]\[ n = \frac{a + 360}{180} \][/tex]
So, we have:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
### Step 2: Compare the Result with Other Equations
#### Compare with Equation 2:
Equation 2 is:
[tex]\[ n = \frac{a}{180} + 1 \][/tex]
Clearly, the right-hand side [tex]\(\frac{a}{180} + 1\)[/tex] is not equal to [tex]\(\frac{a + 360}{180}\)[/tex]. Therefore, Equation 2 is not equivalent to Equation 1.
#### Compare with Equation 3:
Equation 3 is:
[tex]\[ n = \frac{a}{180} + 2 \][/tex]
Let's test this result:
[tex]\[ \frac{a + 360}{180} = \frac{a}{180} + \frac{360}{180} = \frac{a}{180} + 2 \][/tex]
Clearly, [tex]\(\frac{a + 360}{180}\)[/tex] is equal to [tex]\(\frac{a}{180} + 2\)[/tex]. Therefore, Equation 3 is equivalent to Equation 1.
#### Compare with Equation 4:
Equation 4 is:
[tex]\[ n = \frac{a + 360}{180} \][/tex]
We already obtained [tex]\( n = \frac{a + 360}{180} \)[/tex] from Equation 1. Therefore, Equation 4 is equivalent to Equation 1.
### Summary
After comparing, we find that Equations 3 and 4 are equivalent to Equation 1. Therefore, the equivalent equations are:
1. [tex]\( a = 180(n - 2) \)[/tex]
2. [tex]\( n = \frac{a}{180} + 2 \)[/tex]
3. [tex]\( n = \frac{a + 360}{180} \)[/tex]
Equation 2, [tex]\( n = \frac{a}{180} + 1 \)[/tex], is not equivalent to the others.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.