Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's work through this problem step-by-step to determine the perimeter of the square given its diagonally opposite vertices (-2, 9) and (5, 2).
### Step 1: Calculate the Length of the Diagonal
1. Identify the coordinates of the points:
- [tex]\((x_1, y_1) = (-2, 9)\)[/tex]
- [tex]\((x_2, y_2) = (5, 2)\)[/tex]
2. Use the distance formula to find the length of the diagonal:
The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{diagonal length} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Substitute the coordinates into the formula:
[tex]\[ \text{diagonal length} = \sqrt{(5 - (-2))^2 + (2 - 9)^2} \][/tex]
Simplify the expressions inside the square root:
[tex]\[ \text{diagonal length} = \sqrt{(5 + 2)^2 + (2 - 9)^2} \][/tex]
[tex]\[ = \sqrt{7^2 + (-7)^2} \][/tex]
[tex]\[ = \sqrt{49 + 49} \][/tex]
[tex]\[ = \sqrt{98} \][/tex]
[tex]\[ = 9.899494936611665 \][/tex]
### Step 2: Calculate the Length of One Side of the Square
1. Relationship between diagonal and side:
The diagonal of a square relates to its side length by a 45°-45°-90° triangle. Specifically:
[tex]\[ \text{diagonal} = \text{side} \times \sqrt{2} \][/tex]
2. Re-arrange the formula to solve for the side length:
[tex]\[ \text{side length} = \frac{\text{diagonal}}{\sqrt{2}} \][/tex]
3. Substitute the length of the diagonal:
[tex]\[ \text{side length} = \frac{9.899494936611665}{\sqrt{2}} \][/tex]
[tex]\[ = 6.999999999999999 \][/tex]
### Step 3: Calculate the Perimeter of the Square
1. Formula for the perimeter of a square:
[tex]\[ \text{perimeter} = 4 \times \text{side length} \][/tex]
2. Substitute the side length:
[tex]\[ \text{perimeter} = 4 \times 6.999999999999999 \][/tex]
[tex]\[ = 27.999999999999996 \][/tex]
Hence, the perimeter of the square is [tex]\( 27.999999999999996 \)[/tex].
### Step 1: Calculate the Length of the Diagonal
1. Identify the coordinates of the points:
- [tex]\((x_1, y_1) = (-2, 9)\)[/tex]
- [tex]\((x_2, y_2) = (5, 2)\)[/tex]
2. Use the distance formula to find the length of the diagonal:
The distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{diagonal length} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
3. Substitute the coordinates into the formula:
[tex]\[ \text{diagonal length} = \sqrt{(5 - (-2))^2 + (2 - 9)^2} \][/tex]
Simplify the expressions inside the square root:
[tex]\[ \text{diagonal length} = \sqrt{(5 + 2)^2 + (2 - 9)^2} \][/tex]
[tex]\[ = \sqrt{7^2 + (-7)^2} \][/tex]
[tex]\[ = \sqrt{49 + 49} \][/tex]
[tex]\[ = \sqrt{98} \][/tex]
[tex]\[ = 9.899494936611665 \][/tex]
### Step 2: Calculate the Length of One Side of the Square
1. Relationship between diagonal and side:
The diagonal of a square relates to its side length by a 45°-45°-90° triangle. Specifically:
[tex]\[ \text{diagonal} = \text{side} \times \sqrt{2} \][/tex]
2. Re-arrange the formula to solve for the side length:
[tex]\[ \text{side length} = \frac{\text{diagonal}}{\sqrt{2}} \][/tex]
3. Substitute the length of the diagonal:
[tex]\[ \text{side length} = \frac{9.899494936611665}{\sqrt{2}} \][/tex]
[tex]\[ = 6.999999999999999 \][/tex]
### Step 3: Calculate the Perimeter of the Square
1. Formula for the perimeter of a square:
[tex]\[ \text{perimeter} = 4 \times \text{side length} \][/tex]
2. Substitute the side length:
[tex]\[ \text{perimeter} = 4 \times 6.999999999999999 \][/tex]
[tex]\[ = 27.999999999999996 \][/tex]
Hence, the perimeter of the square is [tex]\( 27.999999999999996 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.