Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Solve for [tex]\( x \)[/tex].

[tex]\[ 1 \ \textless \ 2x + 1 \ \textless \ 9 \][/tex]

Sagot :

To solve the compound inequality [tex]\(1 < 2x + 1 < 9\)[/tex], we need to break it down into two separate inequalities and solve each one step by step.

### Step 1: Solve the Left Inequality
First, consider the inequality:
[tex]\[ 1 < 2x + 1 \][/tex]

1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 1 - 1 < 2x + 1 - 1 \][/tex]
[tex]\[ 0 < 2x \][/tex]

2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{0}{2} < \frac{2x}{2} \][/tex]
[tex]\[ 0 < x \][/tex]

### Step 2: Solve the Right Inequality
Next, consider the inequality:
[tex]\[ 2x + 1 < 9 \][/tex]

1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 2x + 1 - 1 < 9 - 1 \][/tex]
[tex]\[ 2x < 8 \][/tex]

2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{8}{2} \][/tex]
[tex]\[ x < 4 \][/tex]

### Step 3: Combine the Results
Combining the solutions of the two parts, we get:
[tex]\[ 0 < x < 4 \][/tex]

Therefore, the solution to the compound inequality [tex]\(1 < 2x + 1 < 9\)[/tex] is:
[tex]\[ 0 < x < 4 \][/tex]