Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the compound inequality [tex]\(1 < 2x + 1 < 9\)[/tex], we need to break it down into two separate inequalities and solve each one step by step.
### Step 1: Solve the Left Inequality
First, consider the inequality:
[tex]\[ 1 < 2x + 1 \][/tex]
1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 1 - 1 < 2x + 1 - 1 \][/tex]
[tex]\[ 0 < 2x \][/tex]
2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{0}{2} < \frac{2x}{2} \][/tex]
[tex]\[ 0 < x \][/tex]
### Step 2: Solve the Right Inequality
Next, consider the inequality:
[tex]\[ 2x + 1 < 9 \][/tex]
1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 2x + 1 - 1 < 9 - 1 \][/tex]
[tex]\[ 2x < 8 \][/tex]
2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{8}{2} \][/tex]
[tex]\[ x < 4 \][/tex]
### Step 3: Combine the Results
Combining the solutions of the two parts, we get:
[tex]\[ 0 < x < 4 \][/tex]
Therefore, the solution to the compound inequality [tex]\(1 < 2x + 1 < 9\)[/tex] is:
[tex]\[ 0 < x < 4 \][/tex]
### Step 1: Solve the Left Inequality
First, consider the inequality:
[tex]\[ 1 < 2x + 1 \][/tex]
1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 1 - 1 < 2x + 1 - 1 \][/tex]
[tex]\[ 0 < 2x \][/tex]
2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{0}{2} < \frac{2x}{2} \][/tex]
[tex]\[ 0 < x \][/tex]
### Step 2: Solve the Right Inequality
Next, consider the inequality:
[tex]\[ 2x + 1 < 9 \][/tex]
1. Subtract 1 from both sides to isolate the term containing [tex]\(x\)[/tex]:
[tex]\[ 2x + 1 - 1 < 9 - 1 \][/tex]
[tex]\[ 2x < 8 \][/tex]
2. Divide both sides by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{8}{2} \][/tex]
[tex]\[ x < 4 \][/tex]
### Step 3: Combine the Results
Combining the solutions of the two parts, we get:
[tex]\[ 0 < x < 4 \][/tex]
Therefore, the solution to the compound inequality [tex]\(1 < 2x + 1 < 9\)[/tex] is:
[tex]\[ 0 < x < 4 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.