Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the ratio [tex]\( c:g:t \)[/tex] from the given ratios [tex]\( c:g = 2:3 \)[/tex] and [tex]\( g:t = 5:4 \)[/tex], we need to find a common term for [tex]\( g \)[/tex] in both given ratios. This step-by-step process helps us achieve that:
1. Establish a common term for [tex]\( g \)[/tex]:
- From the ratio [tex]\( c:g = 2:3 \)[/tex], we see that [tex]\( g \)[/tex] is 3 parts.
- From the ratio [tex]\( g:t = 5:4 \)[/tex], we see that [tex]\( g \)[/tex] is 5 parts.
- To make [tex]\( g \)[/tex] the same in both ratios, we need to find a common multiple of 3 and 5.
2. Finding the Least Common Multiple (LCM) of 3 and 5:
- The LCM of 3 and 5 is 15.
3. Adjust the ratios to reflect [tex]\( g \)[/tex] as the common term:
- For the ratio [tex]\( c:g = 2:3 \)[/tex], multiply each part by 5 (since [tex]\( 15 / 3 = 5 \)[/tex]):
- [tex]\( c \)[/tex] becomes [tex]\( 2 \times 5 = 10 \)[/tex]
- [tex]\( g \)[/tex] becomes [tex]\( 3 \times 5 = 15 \)[/tex]
- So, the ratio [tex]\( c:g \)[/tex] becomes [tex]\( 10:15 \)[/tex].
- For the ratio [tex]\( g:t = 5:4 \)[/tex], multiply each part by 3 (since [tex]\( 15 / 5 = 3 \)[/tex]):
- [tex]\( g \)[/tex] becomes [tex]\( 5 \times 3 = 15 \)[/tex]
- [tex]\( t \)[/tex] becomes [tex]\( 4 \times 3 = 12 \)[/tex]
- So, the ratio [tex]\( g:t \)[/tex] becomes [tex]\( 15:12 \)[/tex].
4. Combine the adjusted ratios:
- Now we have [tex]\( c:g = 10:15 \)[/tex] and [tex]\( g:t = 15:12 \)[/tex], with [tex]\( g \)[/tex] being 15 in both.
- This allows us to write the combined ratio [tex]\( c:g:t = 10:15:12 \)[/tex].
Hence, the simplest form of the ratio [tex]\( c:g:t \)[/tex] is [tex]\( 10:15:12 \)[/tex].
1. Establish a common term for [tex]\( g \)[/tex]:
- From the ratio [tex]\( c:g = 2:3 \)[/tex], we see that [tex]\( g \)[/tex] is 3 parts.
- From the ratio [tex]\( g:t = 5:4 \)[/tex], we see that [tex]\( g \)[/tex] is 5 parts.
- To make [tex]\( g \)[/tex] the same in both ratios, we need to find a common multiple of 3 and 5.
2. Finding the Least Common Multiple (LCM) of 3 and 5:
- The LCM of 3 and 5 is 15.
3. Adjust the ratios to reflect [tex]\( g \)[/tex] as the common term:
- For the ratio [tex]\( c:g = 2:3 \)[/tex], multiply each part by 5 (since [tex]\( 15 / 3 = 5 \)[/tex]):
- [tex]\( c \)[/tex] becomes [tex]\( 2 \times 5 = 10 \)[/tex]
- [tex]\( g \)[/tex] becomes [tex]\( 3 \times 5 = 15 \)[/tex]
- So, the ratio [tex]\( c:g \)[/tex] becomes [tex]\( 10:15 \)[/tex].
- For the ratio [tex]\( g:t = 5:4 \)[/tex], multiply each part by 3 (since [tex]\( 15 / 5 = 3 \)[/tex]):
- [tex]\( g \)[/tex] becomes [tex]\( 5 \times 3 = 15 \)[/tex]
- [tex]\( t \)[/tex] becomes [tex]\( 4 \times 3 = 12 \)[/tex]
- So, the ratio [tex]\( g:t \)[/tex] becomes [tex]\( 15:12 \)[/tex].
4. Combine the adjusted ratios:
- Now we have [tex]\( c:g = 10:15 \)[/tex] and [tex]\( g:t = 15:12 \)[/tex], with [tex]\( g \)[/tex] being 15 in both.
- This allows us to write the combined ratio [tex]\( c:g:t = 10:15:12 \)[/tex].
Hence, the simplest form of the ratio [tex]\( c:g:t \)[/tex] is [tex]\( 10:15:12 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.